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sometimes she will move beyond its fence and spray down the 
playground area, clearing away the cigarette butts and bottle caps 
so that “the kids will have a clean place to play.” She reprimands 
people for smoking marijuana by the development’s playground 
and has confronted children for harassing passing drivers. With-
out the access to her garden, she would not have been able to do 
that. Indeed, the gardens play a central role in the gardeners’ abil-
ity to help and care for their community.

Conclusion 

It could be said that the gardeners consider their work a source 
of beauty, relaxation, exercise, food production, and self-worth. 
On a deeper level, the gardens are places of the gardeners’ own 
personal expression as they position themselves within a society 
full of expectations and stereotypes regarding class and gender. 
In gardening, they have a place for relaxation and solitude, and as 
such it is an “escape” from their daily lives as mothers and nurtur-
ers—lives that allow very little time spent for themselves. While 
they are sources of beauty, exercise, and accomplishment, resident 
gardens also allow their keepers to be active and productive, and 
to create a beautiful place, thus allowing them to defy negative ste-
reotypes of class and gender. How they choose to garden is linked 
to how they see themselves as people, and this statement of identi-
ty is made even more powerful as they make it on public grounds. 
Regardless of whether they garden for themselves or for the com-
munity, it is clear that there is a responsibility the gardeners feel 
to take care of their community, generated by and/or expressed in 
their gardening on community grounds. In that way, their gardens 
on community grounds are invaluable places to them, not only as 
places for themselves but also as self-designed outlets for com-
munity involvement and improvement. By gardening on NYHCA 
grounds, they are cultivating community.
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Introduction

Many problems arise in biochemistry, robotics, and other fields 
in which flexibility of a polygonal or polyhedral structure plays 
an important role. In biochemistry, the flexibility and folding of 
molecules is an important factor in drug design and is a subject 
of ongoing research (Erickson et al. 2004). In robotics, stable con-
figurations of manipulators (e.g., a mechanical arm grasping) as 
well as mechanical joints for locomotion (e.g., walking) must be 
calculated for safe, smooth movement.

The spatial configuration of a molecule or a robot’s manipulator 
can be modeled by a polyhedral structure, a three dimensional 
figure with straight edges, such as a geodesic dome. The faces of 
a polyhedral structure are polygons, typically triangles. Where 
these edges join is known as a vertex. It is important to distinguish 
between generic and nongeneric flexibility. For example, a planar 
rectangle made of rigid rods but hinged at each vertex is clearly 
flexible: one can easily change its shape. That is generic flexibility; 
there are simply not enough constraints to make it rigid. In this 
paper we are concerned with nongeneric flexibility, which means 
that a configuration of hinged rods (edges) that is rigid if the 
lengths of the sides are arbitrarily assigned may become flexible 
under certain precise conditions on the edge lengths (see Figure 
1). Similarly, if the bond lengths of the molecule satisfy these con-
ditions, the polyhedral structure of the molecule becomes flexible 
as well.

Lewis has developed an algorithm to detect conditions under 
which a generically rigid polygonal or polyhedral structure be-
comes flexible (Lewis and Coutsias 2006). He relates the sides and 
angles of the figure by using basic trigonometry and the distance 
formula. This yields a system of multivariate polynomial equa-
tions, a classically difficult problem to solve. To solve the system 
efficiently, he uses the Dixon-EDF method to compute a “resul-
tant,” a single equation that encapsulates many of the important 
properties of the original system (Lewis 2010, 1996). The last part 
of the algorithm, called Solve, searches to find the ratios of side 
lengths necessary for the structure to become flexible by finding 
when the resultant vanishes identically.

The contribution of this paper is to report on a significant im-
provement to the Solve algorithm. The algorithm, which searches 
for appropriate substitutions for flexibility, battles the combinato-
rial explosion inherent in many tree search algorithms. Initially, 
on a real example coming from the cyclohexane molecule, Solve 
ran for approximately seventy hours before producing a set of  
3 139 solution tables that describe the geometry of the molecule 
when it is flexible. We have refined the algorithm to prune the 
search tree of possible substitutions, reducing the total run-time 
of the algorithm, and eliminating subtly disguised duplicates. 

First, by establishing a canonical form for the solution tables, a 
test for equivalence can be used to identify and eliminate dupli-
cate solutions. Furthermore, we found ways to eliminate dupli-
cates as they arise by following a similar procedure on the fly (that 
is, as the algorithm runs).

The remainder of this paper is structured as follows. In the second 
section, we walk step-by-step through the algorithm for deter-
mining molecule flexibility using a simple “toy” quadrilateral ex-
ample. The third section describes the improvement for compar-
ing different algebraic descriptions of the same geometric figure. 
Finally, the fourth section summarizes the results of our improve-
ment and its applicability to new problems.

Detecting Flexibility

Consider the quadrilateral with a bar across it in Figure 1. It is at-
tached to the x-axis at the origin (0, 0) and (s3, 0). The reader can 
imagine that each of the six connection joints is a hinge allowing 
the sides s1, s5, s2 and the rod s4 to pivot within the 2D plane of the 
page. The points A, B, C, and D can move anywhere in the plane as 
long as the distances between them remain constant. Note that A 
and D are not vertices; they are attachment points of the segment 
AD. The structure as pictured is rigid because the rod across the 
middle appears to brace it up.

On the other hand, if this quadrilateral is arranged as a parallelo-
gram with the bar across the middle parallel to the bases as in 
Figure 2, the figure becomes flexible. This means that if the plane 
were vertical, under the force of gravity, the figure would “fall” to 
the x-axis, flexing at all four of its corners while the segment AD 
moves along smoothly.

The variables, which determine the shape and configuration of the 
quadrilateral are the locations of points A, B, C, and D. By plac-

Stephen Fox, FCRH ’11

Algebraic Detection of Flexibility of Polyhedral Structures  
with Applications to Robotics and Chemistry

Figure 1
A simple quadrilateral 
with a bar across it.

Figure 2
A flexible configuration 
of Figure 1.
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ing this figure in the Cartesian plane, with the bottom-left vertex 
coincident with the origin and the base coincident with the x-axis, 
the coordinates of the unknown points can be specified using ba-
sic trigonometry:

A  = (s7 cos α, s7 sin α)
B  = (s1 cos α, s1 sin α)
C  = (s3 + s2 cos β, s2 sin β)
D  = (s3 + s6 cos β, s6 sin β)

Since there are four unknowns, four equations are necessary to 
completely describe the system. The first two equations below are 
expressions for the lengths of s5 and s4 using the distance formula, 
i.e., s5 = dist(B, C) and s4 = dist(A, D). The final two equations are 
elementary trigonometric identities. In this system of equations 
(set each to 0), we write cos α as ca and sin α as sa for simplicity of 
notation and to emphasize that these equations are polynomials:

(s1 · ca – s3 – s2 · cb)2 + (s1 · sa – s2 · sb)2 – s5
2

(s7 · ca – s3 – s6 · cb)2 + (s7 · ca – s6 · sb)2 – s4
2

ca2 + sa2 – 1
cb2 + sb2 – 1

The same method of writing a system of multivariate polynomial 
equations is used for more complex geometric figures, such as 
molecules (Lewis and Coutsias 2006).

The next step in the analysis, the Dixon-EDF method, transforms 
this system of equations into a single equation (the resultant) in 
one variable with seven parameters that encapsulates the most 
important information about the system (Lewis 2010, 1996). The 
process is analogous to the determinant of a matrix. When the 
determinant of a homogeneous linear system vanishes, the system 
of equations is said to be singular; this means there are an infinite 
number of solutions to the system. If the resultant of a nonlinear 
system describing the geometry of a polygon vanishes identically, 
that system, too, has an infinite number of solutions (Coutsias et 
al. 2005). Therefore, the polygon is flexible.

The resultant, which is the determinant of the Dixon matrix, is 
often difficult to compute, and may not even be defined (Dixon 
1909). However, Lewis uses the Dixon-KSY idea first proposed by 
Kapur to overcome some of these problems (Lewis 2008; Kapur 
et al. 1994). Lewis’s implementation in his computer algebra sys-
tem, Ferman, uses his Early Detection of Factors (EDF) algorithm 
to accelerate the calculation of the resultant (Lewis [date un-
known]). In the second phase of the process, his algorithm, Solve, 
determines the conditions under which the resultant is identically 
zero; i.e., all coefficients (relative to the one remaining variable) 
of the resultant polynomial must be zero. Even simple figures can 
give rise to very complicated resultants.

We return to the example pictured in Figure 1. The resultant that 
arises is a degree three polynomial in the variable ca that contains 
162 terms in seven parameter variables (s1 to s7) and the reference 
variable, ca. The first few terms are:

8 · s1
2 · s4

3 · s6 · s7
2 · ca3 – 8 · s1 · s2 · s4

3 · s6
2 · s7 · ca3 –

8 · s1
2 · s2 · s4

3 · s6 · s7 · ca3 + 8 · s1 · s2
2 · s4

3 · s6
2 · ca3 +

4 · s1 · s2 · s4
2 · s6 · s7

3 · ca2 + · · ·

Figure 1 becomes flexible when the bar is parallel to the bases, 

and the outer quadrilateral is a parallelogram. Solve also discovers 
a degenerate case in which the bar coincides with one of the bases 
(this table is not shown). (Degenerate means that some of the ver-
tices coincide; i.e., they lie on top of each other.) The former can 
be represented algebraically with the following system of substitu-
tions that causes the 162 term resultant to be equal to zero:

s6  =  s7

s1  =  s2

s3  =  s5

s4  =  s5

When all four of these substitutions are plugged into the resultant, 
the resultant is equal to zero, and the condition of flexibility is 
satisfied.

Solve is a recursive algorithm that searches for substitutions in the 
variables corresponding to geometric ratios of sidelengths that 
cause the resultant to vanish identically. The algorithm generates a 
set of tables of substitutions for variables that correspond to sides 
of the structure. These substitutions can be quite complicated, or 
very simple. Each solution table describes a geometric configu-
ration of the structure. For example, s1 = s2 means the segment 
labeled s1 (in Figure 1), and the segment labeled s2 must be of the 
same length. The Solve algorithm takes as input a multivariate 
polynomial f in a primary variable x with N parameters si. The 
output is a list of solution tables, as defined above. The steps of 
Solve are outlined below.

1) Factor the leading coefficient in f(x).
2) Use the factors to produce a list of parameters sj.
3) Within each factor, find all linear parameters in the 
list of sj.
4) For all elements in the list of linear parameters:
5) Solve for each linear parameter as a function of the 
remaining parameters; i.e., solve for sj = g(si1, si2, ...).
6) Use the relation g to replace sj in f.
7) This yields fj(x), of lower degree.
8) Recursively call Solve on new fj with original x as pri-
mary variable and append valid sj = g to the solution 
tables.
9) For each parameter that was not detected as a linear 
factor, recursively call Solve on the leading coefficient 
with that parameter as the primary variable.
a) Substitute valid solutions of Solve into the coefficient.
b) Recursively call Solve on the reduced original polyno-
mial with the original primary variable and append all 
valid solutions to the solution tables.
10) Look for duplicates in the solution tables.

Canonical Form for Solution Tables

Solve is a recursive algorithm which calls itself from the body of 
its own code. If the first part of the algorithm fails on the input 
polynomial, it calls Solve on the multivariate coefficient, which is 
also a polynomial. As a consequence of the recursive search tree in 
Solve, the algorithm finds a very large set of solution tables, many 
of them redundant. As partial substitution tables are discovered, 
the recursive anture of the algorithm causes even more potentially 

Figure 3
Solve finds this table 
of substitutions which 
algebraically describes Figure 2.

redundant tables to be found, undetected until the end of the al-
gorithm or not at all. Removing these redundancies is therefore 
likely to significantly accelerate the algorithm.

The key example in this research is a configuration of three quad-
rilaterals that was first discussed by the French mathematician 
R. Bricard in 1987. It is mathematically, though not superficially, 
equivalent to the cyclohexane molecule (Coutsias et al. 2005).

Without the rod HI to brace it, it is clearly flexible. With HI, it 
is generically rigid. Bricard showed that there are three nonde-
generate ways this becomes flexible: all three quadrilaterals are 
parallelograms; two are similar and the third is a parallelogram; 
and an arrangement involving a certain series of ratios that is too 
technical to include here.

We study the redundancies that arise in this example. Lewis’s first 
successful run of Solve on the resultant arising from the Bricard 
quadrilaterals, a polynomial in 5 685 terms with 15 parameters, 
ran for approximately 70 h, ultimately returning 3 139 solution 
tables. The 15 parameters, labeled a1, b1, c1, ... , d3, e3, are certain 
combinations of the sides in Figure 4. A close examination re-
vealed that many of these solution sets are slightly different alge-
braically, but describe the same geometric configuration.

A simple case of redundancy can be fabricated by permuting rows 
of the table (e.g., Table 1 to Table 2 in Figure 5). Table 3 in Figure 
5 reveals a more subtle equivalent variation.

     		      1		      2	                     3

		  a1 = a2		  a3 = a2		  a3 = a1

		  a3 = a2		  a1 = a2		  a2 = a1

The following is a more sophisticated example of equivalent tables 
discovered by Solve. The first three rows of the table are the same. 
However, the fourth row is different. Geometrically, the tables  

describe the same configuration 
of the structure, yet by inspection 
they appear algebraically differ-
ent.

Variables in the solution tables 
are partitioned by the equal sign: 
no variables that appear on the 
left hand side (LHS) of the equal-
ities appear on the right hand 
side (RHS) and vice versa. How-
ever, b2 is on the RHS in Table 1, 
but on the LHS in Table 2. The ra-
tional functions can be resolved 
in terms of a desired variable to move that variable from the RHS 
to the LHS. This is a more difficult type of redundancy to detect 
visually or algorithmically.

Swapping rows (i.e., rearranging the order of equations) produc-
es equivalent geometric descriptions in different algebraic ways. 
Furthermore, swapping variables from the LHS to RHS gives rise 
to more redundant representations. As the algorithm proceeds, 
duplicates that arise early on in the algorithm lead to exponen-
tially more duplicates later. For this reason, we have developed an 
algorithm to detect and eliminate duplicates both on the fly (i.e., 
running as a step in Solve) and in post-processing as a separate 
algorithm that runs once Solve has finished.

Lewis’s original implementation of Solve sorts tables by the vari-
able that appears in the LHS of each row to identify duplicate 
tables from row permutations. The sorting process is more subtle 
than simply permuting rows: when two rows are swapped, the 
right hand side (RHS) of the variable moved up in the table must 
be substituted down the right hand side of the lower rows. Using 
this process of sorting tables and doing a simple difference of the 
respective left and right sides of the tables for comparison (i.e., 
if the difference is 0, they are equivalent tables) still leaves many 
redundant solutions undetected. Table 1 and Table 2 are examples 
of undetected duplicate tables from the original implementation.

In order to identify and detect these lingering redundant solu-
tions, we establish a canonical form for the tables. A canonical 
form is a standard expression for the arrangement of the solution 
sets. Our process of standardizing the form of the table follows 
these steps:

1) Establish an order of variables from highest to lowest, 
a step already required by the Solve algorithm.
2) Search each table for the row with the lowest linear 
variable (i.e., linear in the sense that it is raised only to 
the power of one). This variable will be either on the LHS 
of the table or the RHS, but never both.
3) Re-solve that row in terms of the lowest variable.
4) Before committing to the rearrangement, check that 
this new expression does not cause any denominator to 
become zero.
5) Permute the row to the top of the table, arranging the 
LHS from lowest variable to highest variable (top to bot-
tom), substituting appropriate variables where necessary.
6) Sort the table and repeat until the table does not 
change.

Figure 4
This configuration of 
three quadrilaterals is 
mathematically equiva-
lent to the model of the 
cyclohexane molecule.

Figure 5
Equivalent tables.

Table 1 Table 2

Table 3
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ing this figure in the Cartesian plane, with the bottom-left vertex 
coincident with the origin and the base coincident with the x-axis, 
the coordinates of the unknown points can be specified using ba-
sic trigonometry:

A  = (s7 cos α, s7 sin α)
B  = (s1 cos α, s1 sin α)
C  = (s3 + s2 cos β, s2 sin β)
D  = (s3 + s6 cos β, s6 sin β)

Since there are four unknowns, four equations are necessary to 
completely describe the system. The first two equations below are 
expressions for the lengths of s5 and s4 using the distance formula, 
i.e., s5 = dist(B, C) and s4 = dist(A, D). The final two equations are 
elementary trigonometric identities. In this system of equations 
(set each to 0), we write cos α as ca and sin α as sa for simplicity of 
notation and to emphasize that these equations are polynomials:

(s1 · ca – s3 – s2 · cb)2 + (s1 · sa – s2 · sb)2 – s5
2

(s7 · ca – s3 – s6 · cb)2 + (s7 · ca – s6 · sb)2 – s4
2

ca2 + sa2 – 1
cb2 + sb2 – 1

The same method of writing a system of multivariate polynomial 
equations is used for more complex geometric figures, such as 
molecules (Lewis and Coutsias 2006).

The next step in the analysis, the Dixon-EDF method, transforms 
this system of equations into a single equation (the resultant) in 
one variable with seven parameters that encapsulates the most 
important information about the system (Lewis 2010, 1996). The 
process is analogous to the determinant of a matrix. When the 
determinant of a homogeneous linear system vanishes, the system 
of equations is said to be singular; this means there are an infinite 
number of solutions to the system. If the resultant of a nonlinear 
system describing the geometry of a polygon vanishes identically, 
that system, too, has an infinite number of solutions (Coutsias et 
al. 2005). Therefore, the polygon is flexible.

The resultant, which is the determinant of the Dixon matrix, is 
often difficult to compute, and may not even be defined (Dixon 
1909). However, Lewis uses the Dixon-KSY idea first proposed by 
Kapur to overcome some of these problems (Lewis 2008; Kapur 
et al. 1994). Lewis’s implementation in his computer algebra sys-
tem, Ferman, uses his Early Detection of Factors (EDF) algorithm 
to accelerate the calculation of the resultant (Lewis [date un-
known]). In the second phase of the process, his algorithm, Solve, 
determines the conditions under which the resultant is identically 
zero; i.e., all coefficients (relative to the one remaining variable) 
of the resultant polynomial must be zero. Even simple figures can 
give rise to very complicated resultants.

We return to the example pictured in Figure 1. The resultant that 
arises is a degree three polynomial in the variable ca that contains 
162 terms in seven parameter variables (s1 to s7) and the reference 
variable, ca. The first few terms are:

8 · s1
2 · s4

3 · s6 · s7
2 · ca3 – 8 · s1 · s2 · s4

3 · s6
2 · s7 · ca3 –

8 · s1
2 · s2 · s4

3 · s6 · s7 · ca3 + 8 · s1 · s2
2 · s4

3 · s6
2 · ca3 +

4 · s1 · s2 · s4
2 · s6 · s7

3 · ca2 + · · ·

Figure 1 becomes flexible when the bar is parallel to the bases, 

and the outer quadrilateral is a parallelogram. Solve also discovers 
a degenerate case in which the bar coincides with one of the bases 
(this table is not shown). (Degenerate means that some of the ver-
tices coincide; i.e., they lie on top of each other.) The former can 
be represented algebraically with the following system of substitu-
tions that causes the 162 term resultant to be equal to zero:

s6  =  s7

s1  =  s2

s3  =  s5

s4  =  s5

When all four of these substitutions are plugged into the resultant, 
the resultant is equal to zero, and the condition of flexibility is 
satisfied.

Solve is a recursive algorithm that searches for substitutions in the 
variables corresponding to geometric ratios of sidelengths that 
cause the resultant to vanish identically. The algorithm generates a 
set of tables of substitutions for variables that correspond to sides 
of the structure. These substitutions can be quite complicated, or 
very simple. Each solution table describes a geometric configu-
ration of the structure. For example, s1 = s2 means the segment 
labeled s1 (in Figure 1), and the segment labeled s2 must be of the 
same length. The Solve algorithm takes as input a multivariate 
polynomial f in a primary variable x with N parameters si. The 
output is a list of solution tables, as defined above. The steps of 
Solve are outlined below.

1) Factor the leading coefficient in f(x).
2) Use the factors to produce a list of parameters sj.
3) Within each factor, find all linear parameters in the 
list of sj.
4) For all elements in the list of linear parameters:
5) Solve for each linear parameter as a function of the 
remaining parameters; i.e., solve for sj = g(si1, si2, ...).
6) Use the relation g to replace sj in f.
7) This yields fj(x), of lower degree.
8) Recursively call Solve on new fj with original x as pri-
mary variable and append valid sj = g to the solution 
tables.
9) For each parameter that was not detected as a linear 
factor, recursively call Solve on the leading coefficient 
with that parameter as the primary variable.
a) Substitute valid solutions of Solve into the coefficient.
b) Recursively call Solve on the reduced original polyno-
mial with the original primary variable and append all 
valid solutions to the solution tables.
10) Look for duplicates in the solution tables.

Canonical Form for Solution Tables

Solve is a recursive algorithm which calls itself from the body of 
its own code. If the first part of the algorithm fails on the input 
polynomial, it calls Solve on the multivariate coefficient, which is 
also a polynomial. As a consequence of the recursive search tree in 
Solve, the algorithm finds a very large set of solution tables, many 
of them redundant. As partial substitution tables are discovered, 
the recursive anture of the algorithm causes even more potentially 

Figure 3
Solve finds this table 
of substitutions which 
algebraically describes Figure 2.

redundant tables to be found, undetected until the end of the al-
gorithm or not at all. Removing these redundancies is therefore 
likely to significantly accelerate the algorithm.

The key example in this research is a configuration of three quad-
rilaterals that was first discussed by the French mathematician 
R. Bricard in 1987. It is mathematically, though not superficially, 
equivalent to the cyclohexane molecule (Coutsias et al. 2005).

Without the rod HI to brace it, it is clearly flexible. With HI, it 
is generically rigid. Bricard showed that there are three nonde-
generate ways this becomes flexible: all three quadrilaterals are 
parallelograms; two are similar and the third is a parallelogram; 
and an arrangement involving a certain series of ratios that is too 
technical to include here.

We study the redundancies that arise in this example. Lewis’s first 
successful run of Solve on the resultant arising from the Bricard 
quadrilaterals, a polynomial in 5 685 terms with 15 parameters, 
ran for approximately 70 h, ultimately returning 3 139 solution 
tables. The 15 parameters, labeled a1, b1, c1, ... , d3, e3, are certain 
combinations of the sides in Figure 4. A close examination re-
vealed that many of these solution sets are slightly different alge-
braically, but describe the same geometric configuration.

A simple case of redundancy can be fabricated by permuting rows 
of the table (e.g., Table 1 to Table 2 in Figure 5). Table 3 in Figure 
5 reveals a more subtle equivalent variation.

     		      1		      2	                     3

		  a1 = a2		  a3 = a2		  a3 = a1

		  a3 = a2		  a1 = a2		  a2 = a1

The following is a more sophisticated example of equivalent tables 
discovered by Solve. The first three rows of the table are the same. 
However, the fourth row is different. Geometrically, the tables  

describe the same configuration 
of the structure, yet by inspection 
they appear algebraically differ-
ent.

Variables in the solution tables 
are partitioned by the equal sign: 
no variables that appear on the 
left hand side (LHS) of the equal-
ities appear on the right hand 
side (RHS) and vice versa. How-
ever, b2 is on the RHS in Table 1, 
but on the LHS in Table 2. The ra-
tional functions can be resolved 
in terms of a desired variable to move that variable from the RHS 
to the LHS. This is a more difficult type of redundancy to detect 
visually or algorithmically.

Swapping rows (i.e., rearranging the order of equations) produc-
es equivalent geometric descriptions in different algebraic ways. 
Furthermore, swapping variables from the LHS to RHS gives rise 
to more redundant representations. As the algorithm proceeds, 
duplicates that arise early on in the algorithm lead to exponen-
tially more duplicates later. For this reason, we have developed an 
algorithm to detect and eliminate duplicates both on the fly (i.e., 
running as a step in Solve) and in post-processing as a separate 
algorithm that runs once Solve has finished.

Lewis’s original implementation of Solve sorts tables by the vari-
able that appears in the LHS of each row to identify duplicate 
tables from row permutations. The sorting process is more subtle 
than simply permuting rows: when two rows are swapped, the 
right hand side (RHS) of the variable moved up in the table must 
be substituted down the right hand side of the lower rows. Using 
this process of sorting tables and doing a simple difference of the 
respective left and right sides of the tables for comparison (i.e., 
if the difference is 0, they are equivalent tables) still leaves many 
redundant solutions undetected. Table 1 and Table 2 are examples 
of undetected duplicate tables from the original implementation.

In order to identify and detect these lingering redundant solu-
tions, we establish a canonical form for the tables. A canonical 
form is a standard expression for the arrangement of the solution 
sets. Our process of standardizing the form of the table follows 
these steps:

1) Establish an order of variables from highest to lowest, 
a step already required by the Solve algorithm.
2) Search each table for the row with the lowest linear 
variable (i.e., linear in the sense that it is raised only to 
the power of one). This variable will be either on the LHS 
of the table or the RHS, but never both.
3) Re-solve that row in terms of the lowest variable.
4) Before committing to the rearrangement, check that 
this new expression does not cause any denominator to 
become zero.
5) Permute the row to the top of the table, arranging the 
LHS from lowest variable to highest variable (top to bot-
tom), substituting appropriate variables where necessary.
6) Sort the table and repeat until the table does not 
change.

Figure 4
This configuration of 
three quadrilaterals is 
mathematically equiva-
lent to the model of the 
cyclohexane molecule.

Figure 5
Equivalent tables.

Table 1 Table 2

Table 3
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Once the tables have been arranged into canonical form, they can 
be compared using a simple and efficient algorithm for compari-
son:

1) If the tables do not have the same number of entries, 
they are not equal.
2) Otherwise, subtract the RHS of each row from the 
LHS within the same table.
3) Compare corresponding rows from the two tables up 
to sign.
4) If all rows return positive correspondence, the tables 
are equal and one can be discarded.

The resultant arising from the cyclohexane molecule has 5 685 
terms with 1 variable and 16 parameter variable of the coefficients. 
If the order of the parameter variables is assigned to be: t1, e3, d3, 
a3, e2, d2, a2, b1, e1, d1, a1, c3, b3, c2, b2, c1, then both tables have the 
same canonical form given above.

Conclusion

Although these algorithms were developed for post-processing, 
we are also able to compare tables on the fly to eliminate dupli-
cates as they arise. After each level of recursion, all partial tables 
of substitutions that have been discovered are sorted and com-
pared using these algorithms. By discarding the duplicates, we 
have greatly decreased the overall run time of the Solve algorithm. 
For the cyclohexane molecule, the run time for Solve was reduced 
from approximately 70 h, to just 3 min and 14 s. The set of 3 139 
solution tables was condensed to 62 tables. All three of the nonde-
generate solutions of the cyclohexane configuration appear in the 
list of 62. The results of this work could lead to the ability to ana-
lyze more complex and larger molecules and geometric structures 
and have been used by Lewis to further explore the solution space 
of flexible polyhedra.

References
Bricard R. 1897. Memoire sur la theorie de l’octaedre articule. Journal de Mathématiques pures et appliquées, 
5(3):113–148.

Coutsias EA, Seok C, Wester MJ, Dill KA. Resultants and loop closure. International Journal of Quantum 
Chemistry. 106(1):176–189.

Dixon AL. 1909. The eliminant of three quantics in two independent variables. Proceedings of The London 
Mathematical Society. 2–7(1): 49–96.

 Erickson JA, Jalaie M, Robertson DH, Lewis RA, Vieth M. 2004. Lessons in molecular recognition: the 
effects of ligand and protein flexibility on molecular docking accuracy. Journal of Medical Chemistry. 
47(1):45–55.

Kapur D, Saxena T, Yang L. 1994. Algebraic and geometric reasoning using Dixon resultants. Proceedings 
from The International Symposium on Symbolic and Algebraic Computation; 1994 July 20–22 Oxford (UK).

Lewis RH. 2010. Comparing acceleration techniques for the Dixon and Macaulay resultants. Mathematics 
and Computers in Simulation. 80(6):1146–1152.

———. 2008. Heuristics to accelerate the Dixon resultant. Mathematics and Computers in Simulation. 
77(4):400–407.

———. 1996. The Dixon resultant following Kapur-Saxena-Yang. Retrieved from http://fordham.academia.
edu/RobertLewis/Papers.

———. Fermat computer algebra system. Retrieved from http://home.bway.net/lewis.

Lewis RH, Coutsias EA. 2006. Algorithmic search for flexibility using resultants of polynomial systems. In 
Automated deduction in geometry, Lecture Notes in Computer Science. 4869: 68–79.

Fabrication of CdS Nanoparticle Coated Jasmonate Conjugates 
and their Interactions with Mammalian Cells

Nazmul Sarker, FCRH ’13
Stacey Barnaby, FCRH ’11

The authors thank Dr. A. Tsiola and Dr. K. Fath at the Queens College (CUNY) Core Facilities for Imaging, Cell and Molecular Biology for the use of the transmission electron microscope, the confocal microscope and the 
NanoDrop 2000 spectrophotometer; Dr. B. Balestra and Dr. P. Brock in the Geology Department, Queens College for the use of the scanning electron microscope. Nazmul Sarker thanks the Fordham College at Rose Hill 
Undergraduate Research Grant for financial support. Dr. Ipsita Banerjee thanks the Fordham College Undergraduate Faculty Research Grant for financial support of this work.

Introduction

Self-assembled nanomaterials have been gaining importance be-
cause of their wide range of applications for the development of 
nanodevices (Zhang et al. 2002; Reinhoudt and Crego-Calama 
2002; Zhang 2003). Molecular self-assembly primarily occurs by 
non-covalent interactions such as hydrogen bonding, electrostatic 
interactions, van der Waals forces and hydrophobic interactions 
that are the result of chemical complementarities and structural 
compatibility (Ratner and Bryant 2004). Depending on growth 
conditions, distinct structures such as micelles, vesicles, rods or 
tubules are formed (Hartgerink et al. 2001). There has been much 
focus on biological building blocks such as DNA, proteins and 
lipids using bottom-up approaches for the development of nano-
materials due to relatively economic, mild, and environmentally 
friendly methods utilized therein (Lowe 2000; Boozer et al. 2003). 
By combining biological building blocks with synthetic nanopar-
ticles such as quantum dots or magnetic nanoparticles, one can 
prepare composites capable of a wide range of applications. For 
example, quantum dots (QDs) are being utilized as biomarkers 
for tumor targeting in vitro and in vivo (Michalet et al. 2005). QDs 
are slowly replacing molecular fluorophores and dyes due to their 
spectral stability, and high molar extinction coefficients (Leather-
dale 2002). In particular, cadmium sulfide (CdS) QDs has a band 
gap energy of 2.52 eV (Bruchez et al. 1999). Several methods have 
been utilized for the growth of CdS nanoparticles such as laser 
ablation, electrochemical fabrication, surfactants, and, in recent 
times, biological templates (Artemyev et al. 1997).  

In this work, we have grown CdS nanoparticles on jasmonate 
nanoassemblies biomimetically and examined their interac-
tions with mammalian cells. In general, plants naturally secrete 
the phytohormone jasmonic acid during development and in re-
sponse to biotic and abiotic stress as a defense mechanism (Traw 
and Bergelson 2003; Sembdner and Parthier 1993). We have de-
veloped a new class of nanomaterials by utilizing nanoassemblies 
of the plant phytohormone jasmonic acid (JA) as templates for 
the growth of quantum dots, which may have potential applica-
tions as sensors and may potentially be utilized for bioimaging 
applications. 

Experimental Procedure

Materials 

Jasmonic acid, cadmium chloride, sodium sulfide, 100μg/ml peni-
cillin, 100 μg/ml streptomycin and 10% fetal bovine serum were 
purchased from Sigma Aldrich. Normal rat kidney (NRK) cells 
were purchased from ATCC (CRL-6509), buffer solutions of vari-

ous pH values were purchased from Fisher Scientific. Dulbecco’s 
Modified Eagle’s Medium was purchased from Gibco.  

Methods 

JA assemblies are allowed to grow under aqueous conditions at 
varying pH for a period of four to six weeks at a pH range of two to 
nine. After formation, the assemblies are washed with deionized 
water and centrifuged twice at 20 000 rpm. For functionalization 
of the assemblies with CdS QDs, the precursor, cadmium chloride 
(0.1 M), is incubated with the formed JA assemblies for 48 h. The 
solutions are then heated to 60 °C followed by the drop-wise addi-
tion of sodium sulfide solution (0.1 M) under nitrogen. The solu-
tions are then cooled to room temperature and centrifuged and 
washed thoroughly to remove unreacted materials before further 
analyses. Absorbance spectroscopy is carried out using a Thermo 
Scientific NanoDrop 2000. Readings are taken at a wavelength 
range of 190 nm to 600 nm. All samples are repeated in triplicate.

Fluorescence Spectroscopy is carried out using a Jobin Yvon Fluo-
romax 3 fluorimeter. The samples are excited at 495 nm. Each sam-
ple is analyzed in triplicate. For transmission electron microscopy 
(TEM), the washed samples are air-dried onto carbon-coated cop-
per grids for characterization by TEM (JEOL 1200 EX) operating 
at 100 kV. The morphologies of the samples are also analyzed us-
ing scanning electron microscopy (SEM) (Hitachi S-2600N) oper-
ating between 15–25 kV. For confocal microscopy, the samples are 
mounted on glass slides and sealed with cover slips. The coverslips 
are sealed with fingernail polish and the samples are imaged with 
a Leica TCS-SP5 laser scanning confocal microscope.

Results and Discussion 

Molecular self-assembly has attracted considerable attention for 
its use in the design and fabrication of nanostructures (Huck 
1995). Structurally JA consists of a cyclopentane ring connect-
ed to a pentenyl group, along with one hydroxyl and a carboxyl 
group. The self-assembly of JA at various pH values was examined 
over a period of four to six weeks. In general, under acidic condi-
tions, (pH 2-5), we observed the formation of nanospheres (figure 
1a). In contrast, under neutral to basic conditions, the assembly of 
short fibrous structures was observed (figure 1b). It appears that 
under acidic conditions, hydrogen bonding interactions between 
the hydroxyl groups as well as the fact that the carboxyl group of 
JA is protonated leads to an increase in hydrogen bonding causing 
the formation of aggregates of spherical structures. On the other 
hand, under neutral to basic conditions the carboxyl group is de-
protonated but hydrogen bonding still exists due to O-H group 
interactions. Although there is a decrease in hydrogen bonding, 
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