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Algebraic Detection of Flexibility of Polyhedral Structures
with Applications to Robotics and Chemistry

Introduction

Many problems arise in biochemistry, robotics, and other fields
in which flexibility of a polygonal or polyhedral structure plays
an important role. In biochemistry, the flexibility and folding of
molecules is an important factor in drug design and is a subject
of ongoing research (Erickson et al. 2004). In robotics, stable con-
figurations of manipulators (e.g., a mechanical arm grasping) as
well as mechanical joints for locomotion (e.g., walking) must be
calculated for safe, smooth movement.

The spatial configuration of a molecule or a robot’s manipulator
can be modeled by a polyhedral structure, a three dimensional
figure with straight edges, such as a geodesic dome. The faces of
a polyhedral structure are polygons, typically triangles. Where
these edges join is known as a vertex. It is important to distinguish
between generic and nongeneric flexibility. For example, a planar
rectangle made of rigid rods but hinged at each vertex is clearly
flexible: one can easily change its shape. That is generic flexibility;
there are simply not enough constraints to make it rigid. In this
paper we are concerned with nongeneric flexibility, which means
that a configuration of hinged rods (edges) that is rigid if the
lengths of the sides are arbitrarily assigned may become flexible
under certain precise conditions on the edge lengths (see Figure
1). Similarly, if the bond lengths of the molecule satisfy these con-
ditions, the polyhedral structure of the molecule becomes flexible
as well.

Lewis has developed an algorithm to detect conditions under
which a generically rigid polygonal or polyhedral structure be-
comes flexible (Lewis and Coutsias 2006). He relates the sides and
angles of the figure by using basic trigonometry and the distance
formula. This yields a system of multivariate polynomial equa-
tions, a classically difficult problem to solve. To solve the system
efficiently, he uses the Dixon-EDF method to compute a “resul-
tant,” a single equation that encapsulates many of the important
properties of the original system (Lewis 2010, 1996). The last part
of the algorithm, called Solve, searches to find the ratios of side
lengths necessary for the structure to become flexible by finding
when the resultant vanishes identically.

The contribution of this paper is to report on a significant im-
provement to the Solve algorithm. The algorithm, which searches
for appropriate substitutions for flexibility, battles the combinato-
rial explosion inherent in many tree search algorithms. Initially,
on a real example coming from the cyclohexane molecule, Solve
ran for approximately seventy hours before producing a set of
3 139 solution tables that describe the geometry of the molecule
when it is flexible. We have refined the algorithm to prune the
search tree of possible substitutions, reducing the total run-time
of the algorithm, and eliminating subtly disguised duplicates.

First, by establishing a canonical form for the solution tables, a
test for equivalence can be used to identify and eliminate dupli-
cate solutions. Furthermore, we found ways to eliminate dupli-
cates as they arise by following a similar procedure on the fly (that
is, as the algorithm runs).

The remainder of this paper is structured as follows. In the second
section, we walk step-by-step through the algorithm for deter-
mining molecule flexibility using a simple “toy” quadrilateral ex-
ample. The third section describes the improvement for compar-
ing different algebraic descriptions of the same geometric figure.
Finally, the fourth section summarizes the results of our improve-
ment and its applicability to new problems.

Detecting Flexibility

Consider the quadrilateral with a bar across it in Figure 1. It is at-
tached to the x-axis at the origin (0, 0) and (s,, 0). The reader can
imagine that each of the six connection joints is a hinge allowing
the sides s, s,, s, and the rod s, to pivot within the 2D plane of the
page. The points A, B, C, and D can move anywhere in the plane as
long as the distances between them remain constant. Note that A
and D are not vertices; they are attachment points of the segment
AD. The structure as pictured is rigid because the rod across the
middle appears to brace it up.
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A simple quadrilateral = L T
with a bar across it. (0,0) 83 (s3,0)

On the other hand, if this quadrilateral is arranged as a parallelo-
gram with the bar across the middle parallel to the bases as in
Figure 2, the figure becomes flexible. This means that if the plane
were vertical, under the force of gravity, the figure would “fall” to
the x-axis, flexing at all four of its corners while the segment AD
moves along smoothly.

AN

Figure 2
A flexible configuration
of Figure 1. i

The variables, which determine the shape and configuration of the
quadrilateral are the locations of points A, B, C, and D. By plac-
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ing this figure in the Cartesian plane, with the bottom-left vertex
coincident with the origin and the base coincident with the x-axis,
the coordinates of the unknown points can be specified using ba-
sic trigonometry:

A =(s, cosa, s, sin a)
B = (s, cos a, s, sin @)
C = (s, +s,cos B, s, sin ff)
D = (s, +s,cos 3, s, sin f3)

Since there are four unknowns, four equations are necessary to
completely describe the system. The first two equations below are
expressions for the lengths of s, and s, using the distance formula,
i.e., s, = dist(B, C) and s, = dist(A, D). The final two equations are
elementary trigonometric identities. In this system of equations
(set each to 0), we write cos & as ca and sin « as sa for simplicity of
notation and to emphasize that these equations are polynomials:

(s,-ca-s,—s,-cb)*+(s,-sa—-s, sb)*-s2
(s,-ca-s,—s,cb)*+(s,-ca-s,-sb)’-s}
ca’+sa*-1
ch?+sb* -1

The same method of writing a system of multivariate polynomial
equations is used for more complex geometric figures, such as
molecules (Lewis and Coutsias 2006).

The next step in the analysis, the Dixon-EDF method, transforms
this system of equations into a single equation (the resultant) in
one variable with seven parameters that encapsulates the most
important information about the system (Lewis 2010, 1996). The
process is analogous to the determinant of a matrix. When the
determinant of a homogeneous linear system vanishes, the system
of equations is said to be singular; this means there are an infinite
number of solutions to the system. If the resultant of a nonlinear
system describing the geometry of a polygon vanishes identically,
that system, too, has an infinite number of solutions (Coutsias et
al. 2005). Therefore, the polygon is flexible.

The resultant, which is the determinant of the Dixon matrix, is
often difficult to compute, and may not even be defined (Dixon
1909). However, Lewis uses the Dixon-KSY idea first proposed by
Kapur to overcome some of these problems (Lewis 2008; Kapur
et al. 1994). Lewis’s implementation in his computer algebra sys-
tem, Ferman, uses his Early Detection of Factors (EDF) algorithm
to accelerate the calculation of the resultant (Lewis [date un-
known]). In the second phase of the process, his algorithm, Solve,
determines the conditions under which the resultant is identically
zero; i.e., all coefficients (relative to the one remaining variable)
of the resultant polynomial must be zero. Even simple figures can
give rise to very complicated resultants.

We return to the example pictured in Figure 1. The resultant that
arises is a degree three polynomial in the variable ca that contains
162 terms in seven parameter variables (s, to s ) and the reference
variable, ca. The first few terms are:

3 2 3

vs2.63.5 v s2.ca®?-8-5 -5 - . .S . —
8 S8 S8 ca 8 S, 08,08, S s,0ca
vs2i5 o535 o5 vca® vs os2.¢3.¢s2. a3
8 Sl Sz S4 S6 57 ca’+8 Sl 52 54 56 ca’ +
. . . 2- . 3' 2 LY
4 Sl 52 54 56 57 ca” +

Figure 1 becomes flexible when the bar is parallel to the bases,

and the outer quadrilateral is a parallelogram. Solve also discovers
a degenerate case in which the bar coincides with one of the bases
(this table is not shown). (Degenerate means that some of the ver-
tices coincide; i.e., they lie on top of each other.) The former can
be represented algebraically with the following system of substitu-
tions that causes the 162 term resultant to be equal to zero:

Se = 5,
555
Figure 3
Solve finds this table 53 = 55
of substitutions which
algebraically describes Figure 2. 54 = 55

When all four of these substitutions are plugged into the resultant,
the resultant is equal to zero, and the condition of flexibility is
satisfied.

Solve is a recursive algorithm that searches for substitutions in the
variables corresponding to geometric ratios of sidelengths that
cause the resultant to vanish identically. The algorithm generates a
set of tables of substitutions for variables that correspond to sides
of the structure. These substitutions can be quite complicated, or
very simple. Each solution table describes a geometric configu-
ration of the structure. For example, s, = s, means the segment
labeled s, (in Figure 1), and the segment labeled s, must be of the
same length. The Solve algorithm takes as input a multivariate
polynomial f in a primary variable x with N parameters s. The
output is a list of solution tables, as defined above. The steps of
Solve are outlined below.

1) Factor the leading coefhicient in flx).
2) Use the factors to produce a list of parameters s..

3) Within each factor, find all linear parameters in the
list of S;-

4) For all elements in the list of linear parameters:

5) Solve for each linear parameter as a function of the
remaining parameters; i.e., solve for s, = g(s,, 5,,, ...).

6) Use the relation g to replace s;in f

7) 'This yields ﬁ(x), of lower degree.

8) Recursively call Solve on new f, with original x as pri-

mary variable and append valid s, = ¢ to the solution
tables.

9) For each parameter that was not detected as a linear
factor, recursively call Solve on the leading coefficient
with that parameter as the primary variable.

a) Substitute valid solutions of Solve into the coefficient.

b) Recursively call Solve on the reduced original polyno-
mial with the original primary variable and append all
valid solutions to the solution tables.

10) Look for duplicates in the solution tables.
Canonical Form for Solution Tables

Solve is a recursive algorithm which calls itself from the body of
its own code. If the first part of the algorithm fails on the input
polynomial, it calls Solve on the multivariate coefficient, which is
also a polynomial. As a consequence of the recursive search tree in
Solve, the algorithm finds a very large set of solution tables, many
of them redundant. As partial substitution tables are discovered,
the recursive anture of the algorithm causes even more potentially

4*Zt s://fordham.bepress.com/furj/vol2/iss1/8
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redundant tables to be found, undetected until the end of the al-
gorithm or not at all. Removing these redundancies is therefore
likely to significantly accelerate the algorithm.

The key example in this research is a configuration of three quad-
rilaterals that was first discussed by the French mathematician
R. Bricard in 1987. It is mathematically, though not superficially,
equivalent to the cyclohexane molecule (Coutsias et al. 2005).

Figure 4

This configuration of

three quadrilaterals is
mathematically equiva-

lent to the model of the
cyclohexane molecule. A

Without the rod HI to brace it, it is clearly flexible. With HI, it
is generically rigid. Bricard showed that there are three nonde-
generate ways this becomes flexible: all three quadrilaterals are
parallelograms; two are similar and the third is a parallelogram;
and an arrangement involving a certain series of ratios that is too
technical to include here.

We study the redundancies that arise in this example. Lewis’s first
successful run of Solve on the resultant arising from the Bricard
quadrilaterals, a polynomial in 5 685 terms with 15 parameters,
ran for approximately 70 h, ultimately returning 3 139 solution
tables. The 15 parameters, labeled a, b, ¢, ..., d, e, are certain
combinations of the sides in Figure 4. A close examination re-
vealed that many of these solution sets are slightly different alge-
braically, but describe the same geometric configuration.

A simple case of redundancy can be fabricated by permuting rows
of the table (e.g., Table 1 to Table 2 in Figure 5). Table 3 in Figure
5 reveals a more subtle equivalent variation.

Figure 5

Equivalent tables. a,.=a a =a a =a

The following is a more sophisticated example of equivalent tables
discovered by Solve. The first three rows of the table are the same.
However, the fourth row is different. Geometrically, the tables

Table 1 Table 2
£y = D €3 = O
(—pl 2 3 (—e2 2_: 3

_ [=cibsa3—2.cich-c3a1-a9) _ (—c}bs-ad—2ei-co-caay-an)
d = el dg = @)
ag =10 ay =10
e, = (1b2) oo (brcddi)
e a1 e (cf a2)

_ (byoag) _ (biag)
dg = "ar dg = Ta
P (b1-cf-bz-a2) o — (bydy)
-1 (c3-a7) ) aj
I = (c]-by-az) by — (c3a1-di)
=y 1T ey

describe the same configuration Table 3
of the structure, yet by inspection o, =

they appear algebraically differ- PR T
ent. 3 (ega1)
Variables in the solution tables a3 =10

are partitioned by the equal sign: (b1.59)

no variables that appear on the 2= "o

left hand side (LHS) of the equal- 7, = Craz)

ities appear on the right hand “

side (RHS) and vice versa. How- ¢ = w—“ﬁ—iiﬁ
ever, b, is on the RHS in Table 1, ,62;.0_1\

but on the LHS in Table 2. Thera- @1 = k_&giu_f'l

tional functions can be resolved

in terms of a desired variable to move that variable from the RHS
to the LHS. This is a more difficult type of redundancy to detect
visually or algorithmically.

Swapping rows (i.e., rearranging the order of equations) produc-
es equivalent geometric descriptions in different algebraic ways.
Furthermore, swapping variables from the LHS to RHS gives rise
to more redundant representations. As the algorithm proceeds,
duplicates that arise early on in the algorithm lead to exponen-
tially more duplicates later. For this reason, we have developed an
algorithm to detect and eliminate duplicates both on the fly (i.e.,
running as a step in Solve) and in post-processing as a separate
algorithm that runs once Solve has finished.

Lewis’s original implementation of Solve sorts tables by the vari-
able that appears in the LHS of each row to identify duplicate
tables from row permutations. The sorting process is more subtle
than simply permuting rows: when two rows are swapped, the
right hand side (RHS) of the variable moved up in the table must
be substituted down the right hand side of the lower rows. Using
this process of sorting tables and doing a simple difference of the
respective left and right sides of the tables for comparison (i.e.,
if the difference is 0, they are equivalent tables) still leaves many
redundant solutions undetected. Table 1 and Table 2 are examples
of undetected duplicate tables from the original implementation.

In order to identify and detect these lingering redundant solu-
tions, we establish a canonical form for the tables. A canonical
form is a standard expression for the arrangement of the solution
sets. Our process of standardizing the form of the table follows
these steps:

1) Establish an order of variables from highest to lowest,
a step already required by the Solve algorithm.

2) Search each table for the row with the lowest linear
variable (i.e., linear in the sense that it is raised only to
the power of one). This variable will be either on the LHS
of the table or the RHS, but never both.

3) Re-solve that row in terms of the lowest variable.

4) Before committing to the rearrangement, check that
this new expression does not cause any denominator to
become zero.

5) Permute the row to the top of the table, arranging the
LHS from lowest variable to highest variable (top to bot-
tom), substituting appropriate variables where necessary.
6) Sort the table and repeat until the table does not
change.

Published by DigitalResearch@Fordham, 2012
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Once the tables have been arranged into canonical form, they can
be compared using a simple and efficient algorithm for compari-
son:

1) If the tables do not have the same number of entries,
they are not equal.

2) Otherwise, subtract the RHS of each row from the
LHS within the same table.

3) Compare corresponding rows from the two tables up
to sign.

4) If all rows return positive correspondence, the tables
are equal and one can be discarded.

The resultant arising from the cyclohexane molecule has 5 685
terms with 1 variable and 16 parameter variable of the coefficients.
If the order of the parameter variables is assigned to be: ¢, e,, d.,
a,e,d,a,b,e,d,a,c,b,c,b,c,then both tables have the
same canonical form given above.

Conclusion

Although these algorithms were developed for post-processing,
we are also able to compare tables on the fly to eliminate dupli-
cates as they arise. After each level of recursion, all partial tables
of substitutions that have been discovered are sorted and com-
pared using these algorithms. By discarding the duplicates, we
have greatly decreased the overall run time of the Solve algorithm.
For the cyclohexane molecule, the run time for Solve was reduced
from approximately 70 h, to just 3 min and 14 s. The set of 3 139
solution tables was condensed to 62 tables. All three of the nonde-
generate solutions of the cyclohexane configuration appear in the
list of 62. The results of this work could lead to the ability to ana-
lyze more complex and larger molecules and geometric structures
and have been used by Lewis to further explore the solution space
of flexible polyhedra.
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