Fordham University

Fordham Research Commons

Faculty Publications Robotics and Computer Vision Laboratory

Summer 2021

A Meta-Level Approach for Multilingual Taint Analysis

Damian Lyons

Dino Becaj

Follow this and additional works at: https://research.library.fordham.edu/frcv_facultypubs

6‘ Part of the Robotics Commons

https://research.library.fordham.edu/
https://research.library.fordham.edu/frcv_facultypubs
https://research.library.fordham.edu/frcv
https://research.library.fordham.edu/frcv_facultypubs?utm_source=research.library.fordham.edu%2Ffrcv_facultypubs%2F74&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/264?utm_source=research.library.fordham.edu%2Ffrcv_facultypubs%2F74&utm_medium=PDF&utm_campaign=PDFCoverPages

a

A Meta-Level Approach for Multilingual Taint Analysis

Damian M. Lyons!, Dino Becaj!

L Fordham University, New York, USA
{dlyons,dbecaj} @fordham.edu

Keywords: Multilingual, Static Analysis, Taint Analysis, Software Engineering

Abstract: It is increasingly common for software developers to leverage the features and ease-of-use of different lan-
guages in building software systems. Nonetheless, interaction between different languages has proven to be a
source of software engineering concerns. Existing static analysis tools handle the software engineering con-
cerns of monolingual software but there is little general work for multilingual systems despite the increasing
visibility of these systems. While recent work in this area has greatly extended the scope of multilingual static
analysis systems, the focus has still been on a primary, host language interacting with subsidiary, guest lan-
guage functions. In this paper we propose a novel approach that does not privilege any one language and has
a modular way to include new languages. We present an approach to multilingual taint analysis (a security
oriented static analysis method) as a ‘meta-level’ algorithm which includes monolingual static analysis as a
special case. A complexity analysis of the taint analysis algorithm is presented along with a detailed ‘deep’
multilingual example with Python and C/C++ software. A performance analysis is presented on a collection
of 20 public, multilingual repositories selected from github. Our results show an average of 76% improved

coverage using our algorithm when compared to monolingual taint analysis.

1 INTRODUCTION

It is challenging to track the flow of sensitive data
within a software application to determine if the data
is being dangerously exposed (Boxler and Walcott,
2018; Alashjaee et al., 2019). Smartphone apps, in
particular, have the potential to expose sensitive per-
sonal information, so analysis for Android applica-
tions has received early attention (Arzt, 2014). Taint
analysis methods address this challenge by follow-
ing the flow of sensitive (‘tainted’) data in a program
to determine if it is being leaked to a ‘sink’ loca-
tion without being ‘sanitized’. These methods oper-
ate either by static analysis of the program (Boxler
and Walcott, 2018) or by observing dynamic runs of
the program (Alashjaee et al., 2019). This problem is
complicated in multilingual software systems, defined
as systems composed of software written in different
computer languages, because data flows are difficult
to trace across the language boundaries.

Software developers increasingly leverage fea-
tures from different languages to implement required
functionality more quickly and effectively, resulting
in multilingual software systems. The benefit comes

4The authors are partially supported by grant DL-47359-
15016 from Bloomberg LP.

at a cost: Mayer et al. (Mayer et al., 2017) reported
that 90% of software developers request help with
multilingual codebases on issues such as unexpected
interactions between languages and security breaches.
One reason for this is that cross-language operations
are typically opaque. While many IDEs and tools ex-
ist to assist a developer in visualizing and analyzing
monolingual code, whole program analysis of a mul-
tilingual code base is not as well supported. This
is especially true for languages such as JavaScript
and Python that typically leverage a rich collection
of libraries written in other languages (Madsen et al.,
2013).

The paper presents a novel approach to the prob-
lem of multilingual taint analysis. Building on our
prior work in analysis of multilingual systems (Lyons
et al., 2018; Lyons et al., 2019; Lyons and Zahra,
2020), it proposes a meta-level multilingual static
taint analysis algorithm that includes monolingual
taint analysis as a special case. There are several ways
in which a program in a host language can invoke a
function in a different, guest language, and we fo-
cus on one of these: the Foreign Function Interface
(FFI). Using an FFI, a host language program can call
a guest language program as a function call. There
may be many different host FFI packages for any two

languages (E.g., Python/C++: PyBoost, pybindll,
python.h,...) and more appear regularly. Our pro-
posed solution targets an open-ended aproach to FFI
packages and languages by modularizing the mono-
lingual taint analysis step.

The next section reviews relevant prior literature
and motivates the proposed approach. Section 3 in-
troduces the approach and presents our primary con-
tribution, the Multilingual Taint Analysis (MTA) al-
gorithm. Section 4 describes the architecture and pre-
liminary implementation of the version of MTA used
for performance testing along with a detailed exam-
ple. Section 5 presents the experimental results from
performance testing. Using a sample codebase of
public multilingual repositories, we show that MTA
improves the coverage, or proportion of suspicious
source code opened to inspection, by 76 % on aver-
age. The final section summarizes our contributions
and presents conclusions and plans for future work.

2 RELATED WORK

Individual software designers may elect to write some
parts of their software in one language and some in
another but studies indicate that the interaction be-
tween languages is often a cause of software engi-
neering concerns (Mayer et al., 2017). Programs in
different languages can interact by interprocess com-
munication (IPC), by embedding (e.g., SQL in FOR-
TRAN or JavaScript in HTML), or by employing a
host language Foreign Function Interface (FFI), and
each has been studied. This paper falls into the FFI
category (Furr and Foster, 2005; Lyons et al., 2018;
Lee et al., 2020). Since all software ultimately must
translate to the machine language for execution, an-
other approach to multilingual analysis is to leverage
a common runtime (Grimmer et al., 2018). Our ob-
jective is to provide direct feedback as the software
is being developed rather than analysis of (possibly
binary) executables and thus we employ static analy-
sis of source code rather than dynamic analysis or a
common runtime.

Taint analysis can be carried out by dynamic anal-
ysis (Alashjaee et al., 2019) or static analysis (Boxler
and Walcott, 2018) of the program. Dynamic anal-
ysis involves tracing through the program as it exe-
cutes whereas static analysis evaluates the program
without execution. Each approach has advantages
and drawbacks: Dynamic analysis is limited to sam-
ples of execution but accurately reflects the execu-
tions of the program, whereas static analysis covers
all possible executions but typically needs to be con-
servative to address issues of soundness and com-

pleteness. Kreindl et al. (Kreindl et al., 2019;
Kreindl et al., 2020) present a multi-lingual dynamic
taint analysis that is based on their GraalVM run-
time. Motivated by the opacity of cross-language
function calls (as are we), they support efficient dy-
namic taint analysis in a selection of dynamic and
low-level languages. The implementation leverages
GraalVM, a multi-language virtual machine. The
architecture employs a language-agnostic core and
multiple, language-specific front-ends. Our objec-
tive is to develop a static analysis approach to multi-
language taint analysis, however, the general structure
of (Kreindl et al., 2019) into language-agnostic and
langiage-specific modules is something we feel is ex-
ceptionally valuable.

It is not uncommon for IDEs to support static
analysis in multiple languages (e.g., Eclipse) but it
is uncommon to handle whole programs consisting
of more than one language. HybriDroid (Lee et al.,
2016) can handle mixed Android Java and JavaScript
but the approach is not general. (Lee et al., 2020)
proposes semantic summaries of FFI calls as a more
general framework. (Madsen et al., 2013) use pointer
and use-case analysis to analyze JavaScript calls to
library functions in other languages. However, the fo-
cus in both is on a primary host language handling
subsidiary guest language functions. A multilingual
codebase might contain no primary host language —
there may be major components written in each lan-
guage. Our approach is motivated by this observation
to consider multilingual analysis as a ‘meta-level’ al-
gorithm that incorporates each monlingual analysis as
a component.

3 APPROACH

The meta-level approach proposed here is based on
two observations:

1. Good quality monolingual taint analysis tools ex-
ist and will continue to be developed and im-
proved; and,

2. New FFI packages for multilingual programming
are being developed all the time.

The first observation is easily supported.
Many capable taint analysis tools are avail-
able today: Quandary/Infer (fbinfer.com),
Pyre/Pysa (pyre-check.org), FlowDroid (blogs.uni-
paderborn.de/sse/tools/flowdroid), SonarCloud
(soinarcloud.io) and others. To support the second
observation, we need only look at C++/Python FFI
packages. The oldest package is the python.h FFI, the
Python/C API. However, Boost.Python(boost.org)

was developed shortly after to offer a more seam-
less way to call C++ from Python. Subsequently,
pybind11 (pybindl1l.readthedocs.io) was developed
to offer the same functionality but in a header-only
package. In the case of Java, the basic FFI is the Java
Native Interface, JNI. But JNA (github.com/java-
native-access) and JNR are FFI packages that each
offer an interface improved in different ways.

Taking these two fundamental observations into
account, we propose that the best design for a multi-
lingual taint analysis system is one that views mono-
lingual taint analysis and FFI packages as modular
components that can be added or removed as needed.
We start by introducing some terminology.

3.1 Multilingual Taint Analysis

Let P, be the compilation unit in source language ¢
that is to be analyzed. Let ST (P;) be the set of state-
ments and VA(P;) be the set of variables in P;. For
convenience we will just use ST and VA when clear.

Some s € ST may be function calls to a foreign
function interface (FFI). If (a,s) € FFI; y thens € ST
is a foreign function call from host language ¢ to a
function in guest language ¢’ with argument a. We
only consider the case in which the source for the for-
eign function call is also available for analysis.

We will assume that for every source language
¢ € L there is a taint analysis function TA, defined
as follows!:

TA(Py,Src,Snk) =L (1)
e Py is a compilation unit in source language .

Src={(v,s) :s € ST,v € VA} where v in statement
s is a source of taint.

Snk = {(v,s) : s € ST,v € VA} where v in state-

ment s is a sink to be monitored for taint.

L={C;:ie{1,...,n}} is aset of taint lists C;

e C € L is a sequence (cj), ¢; = (vj,s)),] €

{0,...,m}, where

— sj11 follows s; in a possible execution of Fy;

— if v; is tainted in s; then v} is tainted in s;1;

- (vo,50) € Src, each taint list begins at a source;
and,

— (Vm,Sm) € Snk, each taint list ends at a sink.

Using Py and FFI; p as defined, we apply TAy
with the sink set extended to include all the foreign
function calls:

TA¢(Py,Sre,Snk | J FFl) =L,)
leLy

IThe sanitizer argument is hidden throughout, just for
clarity

Where £, = L — {/}. Some taint lists in Lp, may now
end with calls to a foreign function, indicating that
taint is being passed to that function through an argu-
ment. We propose a mechanism below to continue the
taint analysis across the multilingual boundary.

Let last(C),C € Lp, be the final member, c,,, of
the taint list C. If last(C) € FFIy y, then to fur-
ther analyze the taint, it is necessary to switch to lan-
guage ¢'. However, there is no program Py to ana-
lyze with TAy. To address this, an artificial linkage
program is created from last(C) = (a,s) the foreign
function call statement s with argument tainted argu-
ment a. Lnky ¢ (a,s) is an artificial linkage program in
language ¢ that declares, sets up the arguments, and
then calls the ¢ foreign function. Analysis of taint
continues in ¢, where Py = Lnk; y(a,s):

TAy(Py,Src' Snk' |) FFlpp)=Lp, (3)
ZHEL[/

where

e Src’ includes the original argument and call to the
foreign function.

e Snk’ includes the return from the function and any
other arguments (to catch side-effects).

Consider Algorithm 1 which has arguments:
* Py,

o FFI={FFI;p :{,{' € L} - all available foreign
function interfaces,

e Srcs = {Srcy: £ € L} - all language specific taint
sources,

o Snks = {Snk;: ¢ € L} - all language specific taint
sinks.

The algorithm must allow for multiple sequential and
nested calls to eq.(3) from eq.(2), supporting mutually
recursive function calls between languages.

MTA recursively constructs a set L of multilingual
taint lists. The repeat loop continually evaluates taint
analysis until no further items can be added to L. The
for loop calls MTA recursively for any foreign func-
tion call found. If the call propagated taint, then it is
added to the list of taint sources and is explored by
TA, on the next iteration of the repeat.

3.2 Termination

Let us consider under what conditions MTA will ter-
minate. It is reasonable to assume that there is a fi-
nite list of foreign function calls across all the source
files available for analysis. Each traversal of the for
C € L loop will encounter either new foreign function
calls in last(C) or calls already encountered. New

Algorithm 1 Multilingual Taint Analysis Algorithm

function MTA(P,, FF1,Srcs, Snks) returns L
L+ 0
repeat
L+ L
L <+ LUTA(Py,Srce,SnkeUp FFI&[/)
for C € L such that last(C) € FFI; ¢ do
Py < Lnky p(last(C))
L. < MTA(Py,FFI,Srcs,Snks)
for C' € L. do
if last(C’) € U[/ FFI[A’[I then
Srey + SregUlast(C)
end if
end for
L+ LUL,
end for
until L =1,
return L
end function

calls will expand L by LUL,; however, previously en-
countered calls will not, since any taint lists generated
will already be in L. Since the list of foreign function
calls is finite, and since the for loop makes progress
through this list each time, ultimately there will be
no more new calls encountered. After this happens,
L will not increase in size and the repeat loop will
terminate.

3.3 Complexity

A convenient measure of computational complexity is
how often a monolingual taint analysis is conducted
TA,. For worst case analysis, we will assume that
taint is found to reach the foreign function call, prop-
agate through it, and reach a sink beyond it. Let n be
the total number of foreign function calls and let d be
the maximum nesting of calls.

Consider a simple case n = 1,d = 1: a program
that makes one foreign function call that in turn calls
no other foreign functions. The repeat loop makes
one TA call and the subsequent for loop makes a re-
cursive MTA call to determine whether taint is prop-
agated. The recursive call in this case just needs a
single TA evaluation to return the tainted result. The
foreign function is then added as a source of taint and
the loop repeats. The first TA evaluation now returns
the taint lists from source to the foreign function call,
and from the call to the subsequent sink. The prior se-
quence of TA evaluations must repeat one more time
before L = L, calculating a least fixpoint. The time
can be written in terms of calls to TA as

T,(d)=Ti(1) =3+3T1(0)=(3+3) (4

The basis case T,(0) is of a foreign function that calls
no other foreign functions, requiring just one call to
TA, T,(0) = 1. Because there is a foreign function
call, taint analysis will still be called but just once.
We can generalize the time equation to » calls at ev-
ery depth (except for the last), and a maximum depth
of d:

T(d) = (1+2)+ Y (+2T(d=1) O
i=1

Noting that 7,,(d — 1) does not depend on i,
T,(d) = a(n)+b(n)T,(d — 1) (6)

where a(n) =n+2,b(n) = $n(n+5) The closed form
can be found by expansion of the geometric series:

b(n)d'H -1

sy—1 P

d
Ty(d) = a(n)) b(n)" = a(n)
i=0

The worst case complexity for MTA is polynomial in

n and exponential in d. If we modify MTA so that the

for C € L loop never duplicates prior work, then the

time complexity drops to linear in n but exponential
ind.

T,(d)=n+1)+nT,(d—1) ®)

If we include that the list of foreign function calls
available is finite and an assumption that calls are
distributed evenly over the source code then we can
approximate a bound on the exponential complexity.
Consider that there are a maximum of f foreign func-
tion calls and calls in each monolingual program or
linkage program. Taking b(n) = n and one TA call
for each foreign function call (the ‘efficient’ case in
eq. (8)), then we have that:
d+1
1oy ©)

n—1
Taking the log of both sides and assume that
log,(n®™' — 1) =~ log,(n®*") and log,(n — 1) =
logy(n), we have the approximation
d < logn(f) (10)

For example, if n =20 and f =400, then d ~ 2.

4 IMPLEMENTATION

In this section we describe our intial implementation
of Algorithm 1. The implementation currently only
supports:

o C/C++ calling Python using python.h, and
e Python calling C/C++ using pybind11

Monolingual Taint Analyzers

FFI Sources/Sinks

Python.h
Infer/Quandary — \ / PyObject_Call(
\\ _ Multilingual
T jutingua Python.h
Taint Analysis h N
— Link File generator
/ / ' pybind11.h
Pyt o “clibrary.mul”
Multilingual Code base

B

pybind11
Link File generator

B

.c/c++,.h/h++

-PY

Figure 1: Multilingual Taint Analysis System Architecture.

This decision was made to allow timely performance
feedback on the MTA algorithm as there are many
public examples of Python/C/C++ code. Adding lan-
guages is just a quantitative, not qualitative, enhance-
ment to MTA.

MTA requires that we select a monolingual taint
analysis package for each supported language. We
elected to use Pyt (Thalman, 2016) for Python taint
analysis, due to our prior experience with it (Lyons
and Zahra, 2020), and Infer/Quandary for C/C++ taint
analysis. For efficiency reasons, the recursive MTA
algorithm shown in Algorithm 1 was reimplemented
as iterative. Figure 1 shows our system architecture.
Each supported language is associated with the fol-
lowing:

1. A monolingual taint analyzer (Fig. 1, lhs);
2. A set of FFI source/sink files and (Fig. 1, rhs/top);

3. A linkage program generator (Fig. 1, rhs/bottom).
4.1 Monolingual Taint Analyzers

The host source language is determined based on the
file name suffix. A monolingual taint analyzer is
called by MTA for each a source file using a combi-
nation of user-supplied sources and sinks and the FFI
sources/sinks file. Monolingual taint can be detected
between sources and any of the user-supplied sinks as
would be expected. However, for any source traced to
an FFI sink, MTA begins its multilingual phase.

The linkage program generator is used to build a
standalone program in a guest language with a call to
the function identified in the FFI sink. The guest lan-
guage is identified based on which FFI sink was de-

tected. The linkage program constructor also identi-
fies the guest language source file in the codebase and
ensures that the linkage program includes the source
file as part of its compilation unit.

MTA continues by invoking the guest language
taint analyzer on the linkage program in turn. Once
the analysis concludes, if taint was passed via the FFI
call to any variable involved in the call, then the FFI
call is added as a source of taint and the host taint
analysis is repeated.

4.2 Foreign Function Interface

The source/sink files for a taint analyzer indicate
which source code statements will signal that a vari-
able has become tainted (a source) and which state-
ments are to be monitored for reception of a tainted
value (a sink). All FFI API function calls are included
with the sinks.

There are two FFI interfaces in this implementa-
tion. The python.h FFI is relatively straightforward
and includes API calls such as “PyObject_Call” and
others. Our main focus is on tracking taint through
user code. Some FFI API calls are required to set up
the arguments for the FFI, e.g., PyTuple_Setltem. Be-
cause we are not interested in tracking taint through
system libraries at this point in our research, we
added dummy functions for these that always prop-
agate taint.

The pybind11 FFI is a little more involved, since
the guest language is hidden in a python module. The
existence of foreign function calls is determined by
a preliminary pass over the codebase that inspects
for the FFI C/C++ syntax. For example, function

#include ‘‘example.cpp’’ // guest fn defs

int main() {
double al,a2,ret; // vars for args/reslt
al = taint(al); // consider al tainted
ret = guestfunction(al,a2); // function call
sink(al); // is al still tainted
sink(a2); // was a2 tainted
sink (ret); // is ret tainted
return
}
Figure 2: Example Artificial Linkage Program.

“bar”, defined by a “.def(* pybindll statement in
a file “foo.c++”, is written to the pybindl1 FFI as
“foo.bar”. For this initial testing, it is assumed the
module will be imported without aliasing.

4.3 Linkage Program Construction

The constuction of the FFI linkage program is similar
for all guest languages. The file consists of a main
program that includes the guest language source file
and calls the guest language function identified from
the host language taint analysis. An example is shown
in Fig. 2. Any argument to the guest function that was
tainted in the host program is specifically tainted by
putting them through a “taint()” function in the link-
age program. All the arguments and the function re-
turn are monitored by sending them to a ““sink()” func-
tion in the linkage program. The sources/sinks file for
the guest taint analysis consists of the following:

1. the “taint(“ and “sink(* statements,
2. any user-provided sources and sinks, and

3. the FFI sources/sinks for the guest language.
4.4 Example

An example multilingual system will serve to illus-
trate the operation of the MTA implementation. The
system consists of a web-based interface for a simple
matrix multiplication running on a Flask server. A
user types numbers into textfields on the Flask-served
web page and clicks on a ‘multiply’ button, at which
point the resultant matrix is displayed. The back-end
is a Python program ‘main.py’ that receives the input
matrix data from the web page textfields and returns
the result matrix for display. However, ‘main.py’ uses
a C++ implementation of matrix multiplication for ef-
ficiency. The source code for the Flask back-end is
shown on top in Fig. 3 and the C++ multiply on the
bottom. The FFI is pybind11.

The sources are the input from the web page via
Flask and the sink is the return to the web page via
Flask. A monolingual taint analysis would need the
source of matMul.multiply in Python, otherwise it

@app.route('/', methods=['POST', 'GET'])
def hello():
if request.method == 'POST':
data = list(request.form.to_dict().values())
data = [int(x) for x in data]
mmatl = data[@:9]
mmat2 = data[9:18]
mat_mult = matMult.multiply(data)
response = make_response(render_template('index.html', data=mat_mult))
return response
return render_template('index.html')

std::vector<std::vector<int>> multiply (py::list pyVec) {
std: :vector<int> matOneBase, matTwoBase;
for (int i = 0; i < 9; ++i) matOneBase.push_back(data.at (1))

| for (int i = 9; i < data.size()) matTwoBase.push_back(data.at (i))
std::vector<std::vector<int>> matOne = constr2DVec (matOneBase);
std::vector<std::vector<int>> matTwo = constr2DVec (matTwoBase) ;
std::vector<std::vector<int>> matThree = matMult (matOne, matTwo)
return matThree;

)

Figure 3: Multilingual Taint Example. main.py (top), mat-
Mult.cpp (bottom)

could not reliably trace taint through the multiply.
However, MTA recognizes the FFI as discussed in
section 4.2 and calls for a C++ taint analysis. A sepa-
rate linkage file, test_run.cpp, is generated to include
just the call to the resolved FFI call, the C++ multi-
ply() function. If analysis of this reports taint prop-
agated then matMul multiply is added as a source of
taint and the Python analysis is repeated.

For the purpose of presenting a deeper example,
let us consider further modifying multiply.cpp to call
a numpy matrix multiplication (instead of the C++
code shown in Fig. 4 bottom) using python.h, adding
an extra level of multilingual nesting to the system.
This modification is shown in Fig. 4 where mat-
Mult.cpp now calls a numpy multiply in final.py. The
analysis of this modified example diverges from the
prior example when the linkage file test_run.cpp is an-
alyzed by Quandary. An additional FFI call is noted
(PyObject_CallObject). The linkage file temp_run.py
is constructed to call the resolved python function
pythFunc to determine whether taint is propagated.
Only if it is propagated will the analysis revert to that
of the prior example. The console output from MTA
for this analysis is shown in the Appendix.

S RESULTS

This section presents the results from performance
testing of the MTA implementation. It begins by de-
scribing how the multilingual programs that comprise
the testing codebase were collected and then presents
the performance results.

5.1 Multilingual codebase

The results in this paper were gathered by applying
the MTA implementation to Python and C/C++ pro-
gram which used the python.h and pybind11 FFIs.

main.py (start file)

src = list(request.form.to_dict().values()) temp_run.cpp (calls multiply

from example.cpp)

ans = matMult.multiply(src) vector<int> vec = taint({1, 2, 3})
vector<int> ans;

return render_template(ans); ans = multiply(vec);

ans = convertMyResult(myResult);

return ans;

matMult.cpp

PyObject *myResult =
PyObject_CallObject(myFunction, args); g il MatOne, matTwo = taint(matOne, matTwo)

temp_run.py (calls pythFunc
from final.py)

final.py

return numpy.multiply(args)

matThree = final.pythFunc(matOne, matTwo)

Figure 4: Multilingual Taint Example: FFI Calls

Table 1: MTA Performance Analysis Codebase

Total Num. of Repo. 20
Total Lines of Code (LoC) 1872
Average LoC/Repo. 94
Average Func. Calls/Repo 4.75
Average Forgn. Func. Calls/Repo | 2.2
Max Forgn. Func. Calls/Repo 5

An internet search was carried out for public github
repositories that met these constraints. The approxi-
mately 2000 repositories that were returned were fur-
ther restricted to those that called the guest language
software as a function and those for which the guest
language function was not a class member (though
the remainder of the Python and C++ code could con-
tain and use classes). These were constraints of our
implementation. Finally duplicate or overly similar
examples were removed. The final codebase included
20 multilingual software repositories.

Table 1 summarizes the 20 repositories. The
repositories included a total of 1,872 lines of code
in C/C++ and Python. The average repository con-
tained 2 to 3 source files (not including header files)
with an average of 94 lines of code. This made them
small enough in general to be checked by hand. The
largest was >400 lines of code. The average repos-
itory contained 2 or 3 foreign function calls and the
maximum seen was 5. The vast majority of FFI usage
was for Python calling C/C++ (18), the remainder be-
ing C/C++ calling Python (2) including 1 repository
that had both.

In general the processing of examples was com-
pletely automated. For example, the linkage files
were automatically generated in every case. How-
ever, in some few cases, source files were modified
by hand so that source code processing could occur:
For repositories that were libraries, a main program
was added to call the libary. For repositories that in-
cluded calls to binary libraries, when it could be done,
the library call was replaced with equivalent code. If
it could not be done, the repository was dropped from
the codebase. We view this manual intervention as

a short-term tactic to enable testing and not a long-
term characteristic of our approach; we believe these
changes, if they continue to be needed, could be auto-
mated in the long-term. Finally, as the objective was
to evaluate multilingual taint analysis, the main pro-
gram in each repository was annotated to introduce
taint into an input variable that would eventually reach
the foreign function call.

5.2 Performance results

The MTA performance results on the sample code-
base are shown in Table 2. The first column indicates
the repository number. The second column indicates
the number of taint lists (source to sink) identified
with purely monolingual taint analysis. We calculate
a taint coverage metric as the length of the maximum
taint list times the number of taint lists returned. This
values both additional taints lists and longer taint lists.
The fourth and fifth columns give this data for the
multilingual case. Finally we calculate an improve-
ment for multilingual taint analysis over monolingual
taint analysis as the multilingual coverage divided by
the sum of the mono- and multilingual coverages.

Table 2 shows that the improvement in coverage
is 63% or better in all the examples. It reaches as
high as 95% for one repository (#14). Multilingual
analysis on average improves taint coverage by 76%
— showing that it opens up a significant extra amount
of suspicious code for inspection.

6 CONCLUSIONS

This research has addressed the issue of taint analy-
sis in multilingual software systems. Although it is
increasingly common for software designers to select
different languages for different components of a sys-
tem (JavaScript for the front end, C/C++ for numer-
ical processing, etc.) taint analysis tools are primar-
ily language dependent. In contrast to other other re-
search on multilingual static analysis, our approach

Table 2: MTA Performance Results

Repo. | Mono | Mono | Multi | Multi | Multi

Num Taint | Covrg | Taint | Covrg | Impr.
1. 2 8 3 24 0.75
2. 2 6 3 33 0.85
3. 2 16 3 33 0.67
4. 2 8 3 33 0.8
5. 3 27 5 75 0.74
6. 2 6 3 12 0.67
7. 3 30 8 41 0.93
8. 2 10 3 18 0.64
9. 3 15 5 65 0.81
10. 2 6 3 18 0.75
11. 1 4 3 15 0.79
12. 3 18 5 70 0.80
13. 2 6 4 32 0.84
14. 2 6 4 32 0.95
15. 3 18 5 30 0.63
16. 1 3 3 9 0.75
17. 4 52 7 112 0.68
18. 2 8 3 15 0.65
19. 2 8 3 18 0.69
20. 3 18 5 145 0.89

does not privilege any language in the codebase above
any other. Our proposed solution to extending taint
analysis to multilingual systems includes monolin-
gual analysis and cross-language foreign function in-
terfaces (FFIs) as modular components.

The novel contributions of this paper include
the proposed Multilingual Taint Analysis algorithm
(MTA), an analysis of its complexity and a detailed
example, and performance results from our initial im-
plementation of MTA on a codebase of 20 reposito-
ries totalling 1872 lines of code. A coverage improve-
ment metric is introduced that reveals how much more
source code is opened to inspection for taint using
MTA. On average, coverage improvement was 76%
for MTA over monolingual taint analysis. The aver-
age repository size in this study was relatively small,
and this allowed detailed manual checking. However,
even with these small repositories, the improvement
in coverage is significant. While we believe our re-
sults will transfer to larger repositories, that impor-
tant step is left to future work. Furthermore, the re-
sults hold for the C++/Python FFIs covered by the
implementation. While we argue that other FFIs can
be added with no change to our algorithm design or
complexity calculations, supporting evidence for this
is also a matter of future work.

The decision to concentrate on C/C++ and Python
was made based on the trend to embed C/C++ func-
tions in Python for speed of numerical processing.
While MTA clearly adds functionality in this case,
we believe that it holds even greater promise for
analysis of web repositories which include HTML

and JavaScript front ends communicating with
backends that may be built in Python. Both Python
and JavaScript leverage libraries that are written in
other languages. In future work we plan to address
this problem using the framework developed here.

ACKNOWLEDGEMENTS

The authors wish to acknowledge the contributions of
graduate students Kevin Johns, Courtney King, Ar-
lind Stafaj, Taylor Termine and Benjamin Vecchio.

REFERENCES

Alashjaee, A. M., Duraibi, S., and Song, J. (2019). Dynamic
taint analysis tools: A review. International Journal
of Computer Science and Security, 13.

Arzt, S. (2014). Flowdroid: Precise context, flow, field,
object-sensitive and lifecycle-aware taint analysis for
android apps. ACM SIGPLAN Conf. on Prog. lang.
Des. and Impl.

Boxler, D. and Walcott, K. (2018). Static taint analysis tools
to detect information flows. Int. Conf. Soft. Eng. Re-
search & Practice.

Furr, M. and Foster, J. (2005). Checking type safety of for-
eign function calls. ACM SIGPLAN Conf. on Prog.
Lan. Des. & Imp.

Grimmer, M., Schatz, R., Seaton, C., Wurthinger, T., and
Lujan, M. (2018). Cross-language interoperability in
a multi-language runtime. ACM Trans. Prog. Lan. &
Sys., 40(2).

Kreindl, J., Bonetta, D., and Md&ssenbock, H. (2019). To-
wards efficient, multi-language dynamic taint analy-
sis. MPLR 2019, page 85-94, New York, NY, USA.
Association for Computing Machinery.

Kreindl, J., Bonetta, D., Stadler, L., Leopoldseder, D., and
Mossenbock, H. (2020). Multi-language dynamic
taint analysis in a polyglot virtual machine. MPLR
2020, page 15-29, New York, NY, USA. Association
for Computing Machinery.

Lee, S., Dolby, J., and Ryu, S. (2016). Hybridroid: static
analysis framework for android hybrid applications.
31st IEEE/ACM Int. Conf. on Aut. Soft. Eng.

Lee, S., Lee, H., and Ryu, S. (2020). Broadening horizons
of multilingual static analysis: Semantic summary ex-
traction from c code for jni program analysis. 35th
1EEE/ACM International Conference on Automated
Software Engineering.

Lyons, D., Bogar, A.-M., and Baird, D. (2018). Lightweight
call-graph construction for multilingual software anal-
ysis. 13th Int. Conf. on Software Technologies.

Lyons, D. and Zahra, S. (2020). Using taint analysis and re-
inforcement learning (tarl) to repair autonomous robot
software. IEEE Workshop on Assrd. Aut. Sys.

Lyons, D., Zahra, S., and Marshall, T. (2019). Towards
lakosian multilingual software design principles. 4th
Int. Conf. on Software Technologies.

Madsen, M., Livshits, B., and Fanning, M. (2013). Practical
static analysis of javascript applications in the pres-
ence of frameworks and libraries. 9th Joint Meeting
on Foundations of Software Engineering.

Mayer, P., Kirsch, M., and Le, M.-A. (2017). On multi-
language software development, cross-language links
and accompanying tools: a survey of professional
software developers. Journal of Software Engineer-
ing Research and Development, 5.

Thalman, B. (2016). Pyt: A static analysis tool for de-
tecting security vulnerabilities in python web appli-
cations. MSC Thesis. Aalborg Univ. Denmark.

APPENDIX

WA
ARSI IIICIIOICIIICIKAIIIKAIRIKKR K

rixMultiplier/fing

Figure 5: MTA Taint Analysis of the Deeptaint Example
showing repeated calls to Quandary and to PyT.

	A Meta-Level Approach for Multilingual Taint Analysis
	tmp.1651267033.pdf.C3VPg

