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Abstract. Robot software developed in simulation often does not be-
have as expected when deployed because the simulation does not suffi-
ciently represent reality - this is sometimes called the ‘reality gap’ prob-
lem. We propose a novel algorithm to address the reality gap by injecting
real-world experience into the simulation.
It is assumed that the robot program (control policy) is developed using
simulation, but subsequently deployed on a real system, and that the
program includes a performance objective monitor procedure with scalar
output. The proposed approach collects simulation and real world obser-
vations and builds conditional probability functions. These are used to
generate paired roll-outs to identify points of divergence in simulation
and real behavior. From these, state-space kernels are generated that,
when integrated with the original simulation, coerce the simulation into
behaving more like observed reality.
Performance results are presented for a long-term deployment of an au-
tonomous delivery vehicle example.

1 Introduction

Simulation tools are widely used in robot program development, whether the pro-
gram/controller is built by hand or using machine learning. At the very least,
simulation allows a robot programmer to eliminate obvious program flaws. The
availability of physics engines [1] has produced simulations that can more accu-
rately model physical behavior, making it more attractive to use simulation in
conjunction with machine learning techniques [2] [3] to develop robot programs.
However, a robot program validated with simulation, when operating in a real,
unstructured environment may come across phenomena that its designers just
did not know to include in the simulation, even though the phenomenon could
in fact be simulated if it were known a-priori to be relevant. Examples of this
kind of simulation ‘reality gap’ include inaccurate robot joint parameters, surface
friction, object masses, sizes and locations.
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be interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of the U.S. Department of Defense or the U.S. Government.
Lyons was partially supported by DL-47359-15016 from Bloomberg LP.



This paper addresses closing the reality gap for simulations used to develop
robot programs by combining sim-to-real [4] and real-to-sim [5] approaches. We
will assume that the simulation is a black-box and we present a framework to
coerce simulation behavior to more closely resemble real experience.

The simulation has configuration parameters φ. If deployment of the robot
program (π) results in failure, as determined by a performance monitor, then
our overall objective is for φ to be updated by the deployment experience and
π redeveloped to handle that experience. We expect this virtuous cycle of simu-
lation, deployment and improvement to iterate. The simulation will be modeled
as a transition function Tφ(s′|s, a) where s is the current sensor data from the
simulation, a is the action to be carried out, s′ is the resulting sensor data after
the action is taken, and φ is a setting of the configuration parameters for the
simulation. Real world experience will also be modeled as a transition function
Tr(s

′|s, a). Two important novel aspects of our work are 1) a domain indepen-
dent proposal for φ (as opposed to the more domain specific examples of domain
randomization, e.g., [6] [7]) and 2) a Monte Carlo method to modify φ based
on a direct comparison of estimated transitions functions (as opposed to the
comparison of observations).

Fig. 1: Modified Traaxis platform used in field trials (left); simulation model
(right).

The remainder of the paper is laid out as follows. Section II is a review of re-
lated work. Section III presents our method and architecture. Section IV details
an introductory, simulation-only example. Section V describes the field trial,
using simulation for design and a customized Traaxis platform for deployment,
Fig. 1. Section VI presents our results in two parts. The first part addresses
the unexpected environment change observed in deployment. The second part
addresses unexpected sensor performance. We show that data collected during
deployment can be used to make the simulation behave more realistically, iter-
atively narrowing the reality gap. Conclusions and next steps are presented in
Section VI.

2 Related Work

Researchers using learning techniques to train robot programs on simulation
have developed several approaches to the simulation reality gap. The sim-to-real
approach addresses the issue of moving a policy trained in simulation to real
hardware; [4] discusses this new direction and its open challenges, one key one



of which is improving the accuracy of the simulation tools used - where we aim
to contribute.

Estimating a model of an observed system is typically a system identification
[8] problem. The problem addressed here differs in two ways: Firstly, the system
addressed is not the robot to be controlled, but rather the environment in which
the robot will be embedded. Secondly, the model to be constructed is an ‘add-on’
model for an existing 3D simulation that employs its own blackbox model of the
environment to overrides the simulation in certain parts of the state space and
make its performance more accurate. In this sense, the work is similar to the real-
to-sim approach, a complementary approach [5] in which real-world information
is transferred to a simulation. We employ a composite local model approach,
e.g., [9], to address the integration of reality and simulation.

Producing more realistic behavior does not just concern an improved physics
engine and rendering technology, but also concerns handling uncertainty about
which specific environment the robot will encounter. Benjamin [10] and Lyons
[11] proposed an approach for cognitive robotics where a simulation is used
to predict the environment state and to visually compare video with simulation
predicted imagery. Differences are used to modify the simulation, changing object
appearance, positions and velocities to match the observed video. While this
approach has similarities to mapping (e.g., SLAM), a key difference is its attempt
to insert object descriptions from camera information into a 3D simulation so as
to be able to leverage the predictive properties of the simulation. The approach
relied on a graybox view of the simulation and its modeling of objects.

Christian et al. [12] use a simulation to learn policies for a number of tasks
and consider transferring the policy from simulation to real robot. They note
that the simulation policy is generally correct in high-level gist but fails on some
lower-level details. Yu [13] proposes a two stage approach to policy training for
bipedal locomotion: a presimulation step to ballpark the system identification
for simulation, followed by a more accurate tuning at deployment. Permana [14]
trains a CNN on synthetic imagery for visual detection of ground casualties, and
handles the sim-to-real issue by injecting noise, downsampling, segment removal
and other changes to the simulation data.

Adopting the domain randomization approach, Peng et al. [2] use random
modification of 95 simulation parameters to show that even low fidelity sim-
ulation can be used to train a robot to push a puck successfully over a wide
range of real-world situations. Cheboter et al [15] interleave many simulation
runs with much fewer real-world runs, and modify the simulation configuration
so that it simulates a range of situations more similar to observed experience.
Our proposed approach is most like that of Chebotar. However, instead of using
the domain randomization — establishing a range of initial parameter values
— we follow an approach more similar to Benjamin and Lyons [11] who mod-
ify simulation state during a simulation to close the reality gap. Our approach
differs from sim-to-real approaches in putting the emphasis on improving the
simulation via real-to-sim so that the sim-to-real step becomes less onerous. It
differs from [11]in adopting a blackbox view of the simulation.



3 Approach

The simulated and physical environments are modeled as Markov Decision Pro-
cesses (MDP) Msim = (S,A, Tsim, R) and Mphy = (S,A, Tphy, R) that differ
only in their transition function. The robot program implements a policy π
that can be applied to either MDP. The sensors available to the robot pro-
gram are SN = sn0, sn1, . . . , Snn with value sets SV = Sv0, Sv1, . . . , Svn.
The control outputs available are AN = an0, an1, . . . , anm with value sets
AV = Av0, Av1, . . . , Avm. The actions available to the robot are any setting
of the control outputs

A = Av0 ×Av1 × . . . Avm (1)

and the set of states S is

S = Sv0 × Sv1 × . . . Svn (2)

A reward function, R, will be used as a measure of when the robot program is
achieving its performance objectives on Msim or Mphy. The software to measure
R can either be hand-written by a software engineer, generated automatically
from task specifications [16], or, if the program was generated by learning, copied
from the learning reward module.

The MDP transition functions are defined

Tsim, Tphy : S × S ×A→ [0, 1] (3)

and are interpreted in their usual way as the conditional probability T (s′|s, a)
of transitioning from state s to state s′ when action a is carried out. These
functions encapsulate any difference between what occurs when an action a is
carried out in the simulation in a state s and when the same action a is carried
out in state s in the real environment.

3.1 Kernel Generation

Once the program is ready to be deployed, we collect data from multiple runs
of the final version of the robot program through the simulation:

Hsim = {(si, ai, ri, s′i) : 0 ≤ i ≤ Imax} (4)

for all action a taken in state s then resulting in state s′ and reward r in a run of
the simulation. Similarly, Hphy is collected for the final program in deployment
– representing real experience. Using a frequentist approach, Tsim is estimated
from Hsim, and Tphy from Hphy. The state to state transition function P that
is the combination of the T (for each function) with π, the control software is:

B(s′|s, a) = T (s′|s, a)π(a|s), a ∈ A, s, s′ ∈ S
P (s′|s) =

∑
a∈AB(s′|s, a)

(5)



Let SR(s) be the set of state, action, probability tuples that directly transition
from state s to state s′ in P :

SR(s) = {(s′, a, B(s′|s, a)) : B(s′|s, a) > 0} (6)

Since a state only includes what is observable to the robot, there may be hidden
dynamics in the real world that result in SRphy(s) differing from SRsim(s). Our
first objective is to identify this difference. We define the policy roll-out from a
state s as a sequence:

Roll(s) =

{
SR(s) 6= ∅ (s′, a, p).Roll(s′) (s′, a, p) ∈ SR(s)

else ⊥
(7)

Where ‘.’ is sequence concatenation and ⊥ indicates end of sequence. A number
of paired roll-outs are calculated Rollsim(s) and Rollphy(s) and compared up to
the point at which they are considered to diverge. The distance between two
states is defined by the weighted L1 norm c(s, s′):

c(s, s′) =
∑
i

wi|si − s′i|,
∑
i

wi = 1 wi ∈ <, (8)

States differ if their distance is greater than a threshold εc. If states differ,
and they have sufficiently different probabilities p under each transition function,
this is called a roll-out divergence. For each divergence detected, we construct a
state-space kernel that we will use to modify the behavior of the simulation in
that region of its state space so that it is more similar to observed behavior of
the physical environment.

Next we will describe how the kernel is built, then how the simulation is
modified by a kernel. The key pieces of information in a kernel k are:

– The region of state space in which it is active: ek = N(0, σ2) is a univariate
normal distribution of distance from s, the state preceding the divergence,
where ck(.) = c(s, .) is used to calculate the scalar distance between s and
any other state. For any state s′, ek ◦ ck(s′) is measure of how active kernel
k is at s′.

– The divergence probability distribution: ℘k = (ps, pp), where δ = (s, a, p)
is the common roll-out point just before divergence and δs = (ss, ps, a) in
Rollsim(s0) and δp = (sp, pp, a) in Rollphy(s0) are the points after divergence.

– The kernel transfer function: fk : S×A→ S. This mapping is a composition
of linear functions fk,sni for each sensor sni ∈ SN constructed by least-
squares fit to the state and action data in the sequence starting with the
state preceding divergence and including a small number of successor states.
We will restrict the kernel to be active in a small region of the state space,
and since the transfer function estimate is in a small region of the state
space, we argue that this can serve as a piecewise linear approximation of a
more complex function. For now, we omit functions that transform a state
back to itself. We discuss this useful special case later in the paper.

Algorithm 1 shows the algorithm for kernel construction.



Algorithm 1 Generate Kernels

procedure GenKer(Psim, Pphy)
S0 = States(Psim) ∩ States(Pphy)
while i < Nrollouts do

s0 ∼ U(S0) // sample uniform distrib
rs, rp = Rollsim(s0), Rollphy(s0)
δ, δs, δp = divergence(rs, rp) // state δ followed by δs in rs & δp in rp.
if δ 6= null then // construct kernel at δ

e = N(s, σ2) // δ = (s, a, p) eq.(6)
d = normalized(ps, pp) // where δs = (ss, as, ps), sim. for δp
f = linearfit(δ, δp, . . .) // arg. is a short subseq of rp
AddKernel(e, d, f)

end if
end while

end procedure

3.2 Kernel Manager

We consider the simulation as a black box process, but one over which we have
some control. For example, in [15] a black-box simulation is configured by se-
lecting initial parameters φ from a distribution Pφ. They attempt to learn the
distribution Pφ that best matches traces of real stored experience. We will also
assume that we have access to a set of parameters φ for the black box simulation
but more similar to those of [11] which effect the simulation on simulation each
time-step and not just initialization.

Simulation

Kernel
Manager

s 
a s’

Fig. 2: Architecture for kernel modified simulation

At each simulation time step, the robot program sends its selected action
a to the simulation. While the internal state of the simulation is unknown, it
generates the sensor output values, the Msim state s, and this is communicated
to the Kernel Manager. The kernel manager checks first to see whether the state
s is within the spatial scope for any kernel k by evaluating ek ◦ ck(s) > εc (for
small εc) to see if that kernel is active. The kernel manager selects the first active
kernel, if any are active, and uses it to modify the state of the simulation, using
the simulation parameters φ so that the simulation returns fk(s, a). The kernel



manager itself has no knowledge of the internal simulation state and dynamics.
Knowledge of the simulation is encapsulated in the design of the simulation
configuration parameters φ so that values of φ will modify simulation internal
state to ensure that fk(s, a) is generated.

Although a kernel is only active in a small region of the state space, the effect
of any change to the simulation state is potentially long lasting. This results in
both a spatial and temporal generalization effect. A modification of an object
location for example, will result in sensors picking up the revised location no
matter the pose of the robot - a spatial generalization. Other simulation entities
that subsequently interact with the object (e.g., collide) will do so at the new
location - a temporal generalization. Both of these generalizations leverage the
simulation dynamics applied to new experience gained from execution of the
robot program in a real environment.

4 Delivery Vehicle

We will consider an autonomous delivery vehicle as a long-term service deploy-
ment example. The vehicle will acquire goods from a storage location and deliver
to two outlying sites, returning again to the start location. For this paper, we
will simplify the task to just the transit portion of the problem. The vehicle
repeatedly makes the trip from stores to each delivery location and then back
to stores in a long-term outdoor deployment; each trip is one mission. The per-
formance measure for the vehicle is that it reach each goal gi within a specified
position accuracy εi and time limit di:

perf(t) =


1 |p(t)− gi| < εi & d(t) ≤ di
0 |p(t)− gi| > εi & d(t) ≤ di
−1 d(t) > di

where p(t), d(t) are the position of the robot and time since last goal, respectively.
During the design phase, the robot program is tested in simulation using

what is known about the problem a-priori. The deployment vehicle is a modi-
fied Traaxis platform with Ackermann steering (described in more detail later)
operating in large open field area. Fig. 3(a) and 3(b) show the intended deploy-
ment platform and a Gazebo simulation of the platform (using the open source
Ackermann vehicle model3). Fig. 3(c) shows the Gazebo simulation of the open
field area with the three locations (store and two delivery sites) shown by lighter
colored patches.

The task is programmed in Python using ROS (Robot Operating System).
The main loop sends the the robot to each of the waypoints in turn and initializes
the performance monitor with the goal location, time deadline and accuracy. A
saturated spring model is used to calculate speed and a bicycle pursuit model
used to generate Ackermann steering. These are linearly transformed to Traaxis

3 github.com/trainman419/ackermann vehicle-1



motor commands. The position of the robot at the start of each mission is
selected from a uniform distribution and a small amount of zero mean noise is
injected into the speed and steering signals. GPS data was simulated by providing
Gazebo model position information at a rate of 20 Hz and vehicle orientation
was calculated from GPS velocity. Vehicle pitch sensing was also simulated from
model information.

(a)                                                                    (b)

(c)                                                                    (d)

Fig. 3: Real robot (a), simulated robot (b); simulated delivery terrain with way-
points highlighted (c), unexpected terrain (d)

As discussed, the inital robot program could be handwritten or developed
using a method such as reinforcement learning or any combination of these. All
we insist is that the performance measure is in place and the robot program
(once ready for deployment) is validated in the simulation. The performance
measure is used to assign a reward and for the purposes of this paper the two
phrases ‘reward’ and ‘performance measure’ can be considered synonymous.

The Average Total Reward (ATR), the sum of all rewards divided by number
of missions, is used as a measure of success. Fig. 4 shows the ATR graphs for the
design and deployment of this example. The graph labeled “Design” is the ATR
from validating the robot program in the simulation. At this point in the design
process, the software designers have all the information they consider necessary
to have the program fulfill their understanding of the specification. Thus, we
consider the ATR graph to be an objective characterization of success.

During a long-term deployment, the environment may exhibit phenomena
not anticipated by software designers. For this experiment, we added a ramp
between two of the three waypoints (Fig. 3(d)). The vehicle can navigate the
ramp, but it does slow it down and will almost consistently cause it to fail to
meet one of its deadlines. The ATR graph in Fig. 4, labeled “Deploy” shows the
performance of the control software in this modified simulation (which is taking
the place of a real deployment for our example purposes). It is lower than the
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Fig. 4: ATR graphs for robot program
at design and deployment for example

Fig. 5: Position scatter graph, Hsim

(black), Hphy (blue); calculated kernel
posn (red). ‘+’ marks goal locations.
‘Unexpected’ ramp location shown.

design ATR. We consider this as an empirical indication that the robot program
is not meeting its design specification; however, we can’t say yet what is different
about the environment at deployment time that caused this to happen.

The robot program is instructed to record H (eq.(4)). The state in this ex-
ample includes the robot odometry and pitch. It is important that all sensing
information is recorded, not just that (currently) used in the task. The action
value is the robot speed and steering topics. The reward is the value from the
performance metric. Hsim and Hphy were collected for the missions graphed in
Fig. 4. The kernel generation algorithm was run on this data and 38 unique ker-
nels were constructed (omitting duplicates and candidate divergences that did
not have sufficient information to estimate the transfer function).

The robot program is rerun through the simulation receiving configuration
commands from the Kernel Manager (Fig. 2), generating the ATR graph labeled
“Kernels” in Fig. 6. It is similar to the “Deploy” graph for an initial period
but overall it is not as poorly performing as real deployment while still much
worse than the ”Design” curve. The simulation, modified by the deployment
experience, now much more closely represents what happens when the delivery
robot operates in its physical environment. This provides a tool for designers to
redesign the program so that it will work better in the physical environment.

The robot program could be redesigned manually, using the kernel-modified
simulation for testing. For this example, we chose to use a SARSA reinforcement
learning algorithm in conjunction with the kernel-modified simulation to select
modified control values that maximized the reward. The resulting robot pro-
gram issued faster velocity values when non-zero pitch values were encountered.
The redesigned program, the ”Redesign/K” graph in Fig. 6, shows substantially
improved performance with respect to the “Kernels” graph.

Finally, the redesigned robot program was run again in the “Deploy” situa-
tion - that is, in the simulation that included the unexpected ramp, and without
any Kernel manager input. The graph in Fig. 6 labeled “Redeploy” shows the
ATR for this case. It is higher than the original “Deploy” graph and close, but
not identical to, to the original “Design” graph. The simulation, enhanced by
the kernels automatically extracted from prior physical experience, is now a bet-



ter reflection of the physical environment and can be used to produce a robot
program that will work better in the physical environment.
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Fig. 6: ATR graphs for robot program redesign

5 Field Test

To evaluate the proposed approach, we prototyped a robot program for a three
GPS waypoint mission using Gazebo and ROS. The robot program was then
deployed to a physical robot for traversing the GPS waypoints in an open field,
with the unexpected situation that the robot sometimes encountered a steep
ramp between two of the waypoints. The mission differed from that of the pre-
vious section in that the deadline and accuracy for performance related to the
entire mission, from first to last waypoint, instead of per waypoint, and of course
in that the deployment was not a simulation. The short deployment trial expe-
rience was used to generate state-space kernels, which were used to reduce the
reality gap for the simulation. The experimental procedure and mechanism is
described in more detail below, and the results are presented in the next section.

(a)                                                                                                         (b)

(c)                                                                                                         (d)

Fig. 7: Simulation robot (a) and course (b), and real robot (c) and course (d)

5.1 Design and Simulation

Design and simulation work was completed using ROS Indigo on a Dell Latitude
3460 laptop. The mission program was written in Python 2.7 and simulated
using Gazebo with the open source Ackermann vehicle model as before, Fig.



7(a), and with the same waypoint coordinates, Fig. 7(b). The robot program
used a saturated spring model to generate velocities towards waypoints, and a
bicycle pursuit model to generate the steering and speed for the vehicle, running
at 10 Hz. However, preliminary experimentation with the real platform showed
that the GPS data could certainly not be provided at 20 Hz, as it was in the
previous section. Instead, GPS data was simulated by providing Gazebo model
position information at a rate of 1Hz, and vehicle orientation was calculated
from GPS velocity. Vehicle pitch sensing was calculated as before.

To compensate for the slow GPS, Ackermann kinematics were used to conser-
vatively interpolate position between GPS samples. A small amount of uniformly
distributed noise was added to the steering and speed signals to simulate moving
on bumpy grass. The performance requirement was that the vehicle complete the
course within a time deadline of 39 seconds (empirically established for the ex-
periment) and with an accuracy of 2m of the final waypoint. The robot program
was instrumented to collect all sensor, control and reward signals at 0.5 Hz.

5.2 Description of the Field Trials

The field trials were performed at the River Courts located at the United States
Military Academy (USMA) in West Point, NY. The Robotics Research Center
(RRC) at USMA uses the River Courts to perform robotics testing for aerial
and ground robots. To facilitate testing, they have a trailer designed to be
used/moved to remote locations for field trials and provide researchers with
electricity, wifi, and climate control.

A significantly modified Traaxas Stampede 4x4 VXL, a four-wheel drive re-
mote controlled vehicle, was used as the base of our platform for conducting
experiments. Attached to the constructed frame was a Raspberry Pi 3 B+ and
an Arduino Mega. The Arduino Mega served as a ROS node for the Raspberry
Pi and returned IMU data from an Adafruit LSM9DS1 sensor [17].

The ROS mission program developed in simulation was also used for the field
trials, with the exception that GPS location and vehicle pitch were read from
topics published by the Arduino node. The relationship between the PWM con-
trol signals and the mission program steering and speed signals was established
empirically and very coarsely. The lack of careful calibration between simula-
tion and physical platform was purposeful, since closing that gap is part of the
objective of the research reported here.

6 Results

The data collected from the design and deployment phase is shown in Fig. 8. The
scatter plot in Fig. 8(a) shows all the logged position samples of the simulated
robot during the design phase of the work. The track differs from that in Fig.
5 because of the slower GPS rate: While the straight line segments are similar,
the turns at each waypoint show some overshoot.The scatter graph of robot



locations of the physical robot during deployment is shown in Fig. 8(b), and it
differs from both of the prior simulation graphs.

The Average Total Reward (ATR) graph shows that the simulation performs
well according to its performance monitor. The deployed robot program fails to
meet the performance requirement however, as evidenced by its decreasing ATR
graph. Of course, we engineered the field trial to force this effect by introducing
unexpected terrain, a physical ramp between waypoints (5,15) and (-5,15), Fig.
3(d).

As described in Algorithm 1, the data collected from design and deployment
(Eq.(4)) was used to generate the transition functions Psim and Pphy (Eq.(6)).
Psim had 951 state transitions, and Pphy had 942 transitions. The vast majority
of both had a branching factor of 1. There were 882 states in common between the
two, where states are compared as described in Eq.(8) and its accompanying text.
One hundred paired roll-outs were conducted and divergent states identified.
From this, 15 unique divergences were identified and kernels developed for them.
Each of the kernels included a linear transfer function mapping velocity and
sensor state to a new sensor state - position, orientation and pitch. Any kernel
whose transfer function mapped each state to itself was omitted - for now. These
will be discussed in a subsequent section.

(a) (b)

(c)

Fig. 8: Data from design and deployment trials (a) scatter plot of 2D position
in design, (b) in deployment, and (c) combined ATR graph. Waypoint locations
are marked as ‘+’.

6.1 Kernels non-identity transfer functions

Fig. 9(a) shows the kernel mean location overlayed on the deployment tracks.
Recall that this location is the one immediately preceding the divergence - and on



the track overlay, many kernels are clustered around and just after the waypoint
preceding the ramp.

The robot program was then rerun in the simulation but with the Kernel
Manager active. Fig. 9(b) shows a number of ATR graphs including the original
design and deployment graphs. The graph labeled ”Kernels” shows the result of
executing the original robot program but in the kernel modified simulation. The
performance is much worse than the original performance, but not as severe as
the actual deployment.

There are many ways that a simulation could be coerced into failing the
performance measure. But unless the mechanism failure allows a designer or
learning algorithm to redesign and test in simulation and have this generalizes
to improved real performance, the method would have limited use. In section
4, the modified simulation was used in conjunction with a SARSA reinforce-
ment learning algorithm to generate an improved robot program that generated
faster velocities when non zero pitch was detected. That same same solution was
applied here, but the velocity was manually adjusted so that the performance
measure was achieved in the modified simulation. Our approach is agnostic as to
the specific method of robot program improvement (machine learning in section
4 and manual modification here).

This improved robot program was tested on the kernel modified simulation,
producing the ATR graph labelled ”Redes/K” in Fig. 9(b). The modified robot
program shows improved performance over the original program, approaching
within 2̃5% of the original performance. The modified program was redeployed
to the robot, and that performance is shown in the ATR graph labeled ”Re-
deploy” in Fig. 9(b). The improvement in behavior transfers from simulation
to reality, supporting the argument that robot programs (implementations of
control policies) developed with the kernel mechanism �transfer well to reality.

(a) (b)

Fig. 9: Deployment track data (a) overlay showing calculated kernel locations in
red, where ramp is shown at its approx. deployed location, (b) ATR graph for
kernels, redesign and redeployment.

6.2 Kernels with identity transfer functions

Our inital analysis rejected any kernels with identity transfer functions. This
allowed us to identify the behavior divergences in roll-outs related to the intro-



duction of the ramp. However, these divergences don’t address the reason that
Fig. 8(a) is quite different in appearance from Fig. 8(b). To capture this, we need
to discuss kernels that have an identity transfer function - these represent diver-
gences in which the position sensor did not report any update of the position in
the deployment roll-out.

This phenomenon is observed because the deployment GPS rate is lower
than was expected at design time. However, the predictive model used at design
time is unable to compensate, so that the position invariably lags, resulting in
extensive overshoots. Unfortunately, our existing approach will not work here.
If a kernel predicts no motion of the platform, then in addition to the sensors
being caused to report no motion, the simulation is also modified to force no
motion. The only way to distinguish a kernel from a sensor divergence, which we
are discussing now, from that from a motor divergence, which is what we have
addressed up until now, is to utilize a sensor timestamp, extending state as

S = Stv0,×Stv1 × . . . Stvn Stvi = Svi × T (9)

For a set of times T = {t0, t1, . . .}. Each roll-out will thus include timestamped
sensor data. If fk,sni

is the transfer function for active kernel k sensor sni, and
the kernel manager applies this to the current state s = (stv0, stv1, . . . , stvn),
then the modified state s′ = fk(s, a) has stv′i = fk,sni

(stvi, a). Finally, since
stvi = (svi, ti), if fk,sni is an identity transfer function, then ti = t′i and this
is unambiguously from a sensor divergence. Any other transfer function is from
a motor divergence. For convenience, these will be referred to as sensor kernels
and motor kernels respectively.

(a) (b)

Fig. 10: Sensory Kernels: (a) overlay showing design track (black), deploy track
(gray) and calculated kernel locations (red), (b) overlay of kernel modified design
track (black) and original deploy track (gray).

The kernel manager treats these cases slightly differently: an active sensor
kernel modifies the sensor data only, whereas an active motor kernel modifies
sensor data and simulation state. When sensory divergences are now not removed
from the one hundred paired roll-outs, 54 sensory kernels are identified in addi-
tion to the motor kernels already identified. Where the 15 motor kernels relate
principally to the unexpected ramp, the 54 sensory kernels relate principally to
the slower than expected GPS. Fig. 10(a) shows the location of the sensory ker-
nels. They are focused around the turns at the waypoints. Fig. 10(b) shows an



overlay of the original deployment track (gray) with the new, kernel modified
simulation tracks. The mission program was not changed to produce this track,
which is now more similar to the original deployment; the change results from
the effect of the sensory kernels in Fig. 10(a) extracted using our approach.

7 Conclusions

This paper has proposed a novel Monte-Carlo approach to the reality gap prob-
lem. The approach collects simulation and real world observations and builds
conditional probability functions for them. These are used to generate paired
roll-outs and to look for points of divergence in behavior. The divergences are
employed to generate state-space kernels coercing the simulation into behaving
more like observed reality within a region of the state space. Our results support
not just that the kernel approach can force the simulation to behave more like
reality, but that the modification is such that a robot program with an improved
control policy tested in the modified simulation also performs better in the real
world.

The kernel managed simulation in our field trials did not produce as poor an
ATR graph as the actual deployment Fig. 9. This is principally due to restrict-
ing the scope of each state-space kernel to a small region of state space with
ek ◦ ck(s′) < εc. The advantage is that it allows us to leverage a fast function
approximation method. The disadvantage is that it could require making a lot
of kernels to capture the real environment with high fidelity. We argue however
that there is an advantage in understating the effect of experience gained in each
iterative deployment since it produces a sequence of smaller learning obstacles
rather than a single large obstacle. This is a useful learning strategy [18].

The work most similar to ours is that of [15]. A crucial point of difference is
that [15] (and some others) address the reality gap problem with a principled
domain randomization approach, providing a range of environment for policy
development, and generating a policy that is robust along the right dimensions
of variability. We address the same problem but from the perspective of making
each simulation run more closely resemble reality. This is reflected in how the
simulation is “wrapped” by each approach: our approach requires a more invasive
configuration – access to the Gazebo model information – but we argue that our
configuration is less application specific and more easily generalized. We are
especially interested in generalization to higher-dimensional state-spaces.

The quality of the improvement that our method makes is proportional to
the divergence information that it has to work with. An avenue of future study
is development of control strategies that improve divergence information by ex-
ploring more of the state space during deployment.
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