Document Type

Conference Proceeding


cognitive robotics, problem-solving, simulation, computer vision, sensory fusion


Computer Engineering | Robotics


One of the objectives of Cognitive Robotics is to construct robot systems that can be directed to achieve realworld goals by high-level directions rather than complex, low-level robot programming. Such a system must have the ability to represent, problem-solve and learn about its environment as well as communicate with other agents. In previous work, we have proposed ADAPT, a Cognitive Architecture that views perception as top-down and goaloriented and part of the problem solving process.

Our approach is linked to a SOAR-based problem-solving and learning framework. In this paper, we present an architecture for the perceptive and world modelling components of ADAPT and report on experimental results using this architecture to predict complex object behaviour. A novel aspect of our approach is a ‘mirror system’ that ensures that the modelled background and foreground objects are synchronized with observations and task-based expectations. This is based on our prior work on comparing real and synthetic images. We show results for a moving object that collides and rebounds from its environment, hence showing that this perception-based problem solving approach has the potential to be used to predict complex object motions.

Article Number


Publication Date



Multisensor, Multisource Information Fusion: Architectures, Algorithms, and Applications at the SPIE Defense and Security Symposium, Orlando (Kissimmee), FL, April 2010

This research was conducted at the Fordham University Robotics and Computer Vision Lab. For more information about graduate programs in Computer Science, see, and the Fordham University Graduate School of Arts and Sciences, see

Included in

Robotics Commons